HARMONICS,

 O R
THE PHILOSOPHY

OF MUSICALSOUNDS.

B Y

R OBERT SMITH, D.D, F.R.S; And Mafter of Trinity College

In the Univerfity of Cambridge.
O Decus Pbobbi
$\xrightarrow[\text { Ô laborum }]{ }$
Dulce lenimen.

THESECOND EDITION, Much improved and augmented.

$$
\mathrm{L} O \mathrm{~N} D \mathrm{ON}:
$$

Printed for T. and J. Merrill Bookfellers in Cambridge:
Sold by B.Dod, J. Whistonand B. White,
J. Nourse, and M. Cooper in London;
J. Fletcher, and D. Prince in Oxford, M DCC LIX.

Scimus muficen, mathefin, atque adeo veram plysicaint nofris moribus n on abeffe à Principis perfona: Quce quidem omnia apud Gracos non laude folum, fed bonore et gloria digna ducebontur.

Epaminondas, Imperator ille infignis, ne dicam fummus vir unus omnis Grecier, philofopbian et mufcam egregie didicit. Nam doctus eft à Dionyjio, qui fuit eximia in muficis gloria. At pbilooophice preceptorem babuit Ly in Pytbegoreum, neque prius eum à Se dimift, quam doctrinis tanto anteceffit alios, ut facile intelligi poffet, pari modo fuperaturum omnes in cateris artibus. Corn. Nep. vit. Epam. fub initio.

TO

HIS ROYAL HIGHNESS

W I L L I A M

DUKE OF CUMBERLAND;

This Philofophical Treatife,

For a lafting Teftimony of Gratifude,

Is humbly offered and dedicated,

By His ROYAL HIGHNESS'S
moft devoted and
moft dutiful fervant

Robert Smith

THEPREFACE

TO THE FIRST EDITION.

THE want of an elementary treatife of harmonics, fuch as might properly have been quoted in fupport of my demonftrations, has obliged me to begin the following work from the firft principles of the fcience.

The antient theorits confidered no other confonances than fuch as are perfect, and yet all their mufical fcales compofed of thefe confonances, have in practice been found difagreeable. The reafon is, they neceffarily contain fome imperfect concords, whofe imperfections are too grofs for the ear to bear with.

The skill of the moderns has been chiefly employed in the bufinefs of tempering the antient fcales, that is, in diftributing thofe groffer imperfections in fome of the concords, among all the reft or the greater part of them. By a 3 which
which means, though the number of impeifect concords be greatly increafed, yet if their feveral imperfections be but as much diminifhed, the car will be lefs offended than before. Becaufe it is the traniftion from a better harmony to a worfe, which chiefly gives the offence; as is evident to any one that attends to a piece of mufic performed upon an inftrument badly tuned. It follows then that the inftrument would be better in tune, if all the confonances were made as equally harmonious as poffible, though none of them were perfect.

And if this be the true defign in tuning an inftrument, or tempering a fale of founds, a theorift ought to begin with the fimplett cafe; and inquire in the finft place, whether it be poffible for two imperfect confonances to be made equally harmonious; and if fo, what muft be the proportion of their temperaments or imperfections; and alfo whether different confonances require different proportions. Thefe and the
the like queftions being rightly fettled, we may then determine in what proportion thofe groffer imperfections in the antient fcales ought to be diftributed, fo as to make all the concords equally harmonious in their kind, either exactly or as near as poflible.

But as none of the writers that I have feen, have attempted to give us the leaft notion of the nature and conftitution of imperfect confonances, nor of any one property or proportion of their effects upon the ear, except a fingle conjecture whofe contrary is true (a), it was not poffible for them to determine, from the principles of fcience, what diftribution of thofe groffer imperfections in the antient fyfems, would produce the moft harmonious fale of mufical founds.

As this is one of the mont difficult and important problems in harmonics, in order to a fcientific folution of it I found it neceflary to premife a Theory of Imperfect Confonances (b), wherein

$$
\text { a } 4
$$

(a) Prop. xili, coroll. 8.
(b) Scet. vi.

I have demonftrated as many properties of their Periods, Beats and Harmony as I judged fufficient for folving that problem, and probably any other that belongs to harmonics. This theory with its preliminaries and confequences takes up a large part of the prefent treatife. As to the reft I chufe to refer the reader to the book it felf or the Index, rather than trouble him with a further account of it: a hort one would be imperfect or obfcure, and a perfect one, too long for a preface.

Having been asked more than once, whether an ear for mufic be neceffary to underftand harmonics, it may not be amifs to give this anfwer: That a mufical ear is not neceffary to underftand the philofophy of mufical founds; no more than the eye, to underftand that of colours. Our late Profeffor of Mathematics was an inftance of the latter cafe, and the $\mathrm{xx}^{\text {th }}$ propolition of this treatife affords an inftance of the former. For by the folution of that propofition and a new way of tuning an
THE PREFACE.
vifi ${ }^{\text {th }}$, defcribed in prop. XI, fchol. 2, art. 6 , a perfon of no ear at all for mufic may foon learn to tune an organ according to any propofed temperament of the fcale; and to any defired degree of exactnefs, far beyond what the fineft ear unaffifted by theory can poffibly attain to: and the fame perfon, if he pleafes, may alfo learn the reaion of the practice.

But though an ear for mufic is not neceffary to underftand this treatife, yet thofe that are acquainted with mufical founds will more readily apprehend many parts of it, and receive more pleafure from them.

In the firft fcholium to prop. xx, I obferved that the winter feafon had prevented me from tuning an organ by the fecond table of beats, in order to try what effect the fyftem of Equal Harmony might have upon the ear. But upon telling Mr. Turner, one of our organits at Cambridge, how he might approach near enough to that fyftem, by flattening the major $11^{\text {ds }}$,
till the beats of the $v^{\text {th }}$ and $\mathrm{VI}^{\text {th }}$ major with the fame bafe, went equally flow, by his great dexterity and skill in tuning he prefently put my rule in execution upon a ftop of his organ; and affirmed to me, he never heard fo fine harmony before, efpecially in the flat keys; but he added, that for want of more founds in every octave the falfe concords were more intolerable than ever: and no wonder, as their common difference from true concords was then increafed from one fifth to one fourth of the tone.

Nor will it be improper to mention a like experiment made by the accurate hand of Mr. Harrifon, well known to the curious in mechanics by his admirable inventions in watch-work and clock-work for keeping time exactly both at fea and land: which if duly encouraged and purfued will undoubtedly prove of excellent ufe in navigation; by correcting the fea-charts, with refpect to longitude, as well as the reckonings of a fhip, to as great
exactnefs, in all probability, as need be defired.

But in regard to the experiment I was going to mention, he told me he took a thin ruler equal in length to the fmalleft ftring of his Bafe Viol, and divided the ruler as a monochord, by taking the interval of the major $1 I^{\text {d }}$, to that of the vint ${ }^{\text {th }}$, as the diameter of a circle, to its circumference. Then by the divifions on the ruler applied to that ftring, he adjufted the frets upon the neck of the viol, and found the harmony of the confonances fo extremely fine, that after a very fmall and gradual lengthening of the other ftrings, at the nut, by reafon of their greater ftiffnefs, he perfectly acquiefced in that manner of placing the frets.

It follows from Mr. Harrifon's affumption, that his $1 I^{d}$ major is tempered flat by a full fifth of a comma. My in ${ }^{d}$ determined by theory, upon the principle of making all the concords within the extent of every three octaves as equally harmonious as poflible, is
xii THE PREFACE.
tempered flat by one ninth of a comma; or almoft one eighth, when no more concords are taken into the calculation than what are contained within one octave. That theory is therefore fupported on one hand by Mr. Harrifon's experiment, and on the other by the common practice of muficians, who make the major n^{d} either perfect or generally fharper than perfect.

We may gather from the conftruction of the Bafe Viol, that Mr. Harrifon attended chiefly, if not folely to the harmony of the confonances contained within one octave; in which cafe the differences between his and my temperaments of the major $1 I^{\mathrm{d}}$, $\mathrm{vi}^{\text {th }}$ and $\mathrm{v}^{\text {th }}$, and their feveral dependents, are refpectively no greater than 4,3 and \mathbf{r} fiftieth parts of a comma. And confi_ dering that any affigned differences in the temperaments of a fyftem, will have the leaft effect in altering the harmony of the whole when at the beft, I think a nearer agreement of that experiment with
with the theory could not be reafonably expected.

Upon asking him why he took the interval of the major mid to that of the viri $^{\text {th }}$ as the diameter to the circumference of a circle, he anfwered, that a gentleman lately deceafed had told him it would bring out a very good divifion of a monochord. Whoever was the author of that hypothefis, for fo it muft be called, as having no connexion with any known property of founds, he took the hint, no doubt, from obferving that as the octave, confifting of five mean tones and two limmas, is a little bigger than fix fuch tones, or three perfect major $\mathrm{III}^{\text {ds }}$, fo the circumference of a circle is a little bigger than three of its diameters.

When the monochord was divided upon the principle of making the major 111^{d} perfect, or but very little charper, as in Mr. Huygens's fyltem refulting from the octave divided into 3^{1} equal intervals, Mr. Harrifon told me the major vits were very bad, and much
worfe than the $v^{\text {ths }}$. In which he judged rightly, as I further fatisfied my felf by trying the experiment upon an organ; and being folicitous to know the reafon of that effect, that is, why the $v^{\text {ths }}$ and vi $^{\text {ths }}$ major, when equally tempered, fhould differ fo in their harmony, after various attempts I fatisfied my curiofity. With a view to fome other inquiries I will conclude with the following obfervation. That, as almoft all forts of fubftances are perpetually fubject to very minute vibrating motions, and all our fenfes and faculties feem chiefly to depend upon fuch motions excited in the proper organs, either by outward objects or the power of the Will, there is reafon to expect, that the theory of vibrations here given will not prove ufelefs in promoting the philofophy of other things befides mufical founds.

Rob. Smith.

Trinity College,
Cambridge, Dec. $3^{1.1748 .}$

THE PREFACE

TO THE SECOND EDITION.

$I N$ this Second edition of the fe barmonies, befdes many faller inprovements, the properties of the periods, beats and harmony of imperfeet consonances are more explicitly demonftrated (a) and confirmed by very easy experiments (b). The ultimate ratios of the periods and beats, which are generally more useful and elegant than the exact ratios, are proved to be Julficiently accurate for mot purposes in harmonics (c). More methods are added for finding the pitch of an organ (d) and for tuning it, cither by effimation and judgment of the ear (e), or more exactly and readily by ifocbronous beats of different concords (f), as well as by complete
(a) Lemma to prop. Ix, and prop. Ix, XI and corotlares.
(b) Prop. xi. fchol. 2.
(c) Prop. xi. fchol. I.
(d) Prop xviii. and fchol. \&s.
(e) Sect. Ix. art. I.
(f) Prop. xx. fchol. 2.
xvi THE PREFACE.
complete tables of beats. An enquiry is made whether coincident pulses be neceffarl, or only accidental to a perfect confinance (g).

And lafly, as the barpfichord has neither flings nor keys for any of the fe founds $\mathrm{D}^{*}, \mathrm{~A}^{*}, \mathrm{E}^{*}, \mathrm{~B}^{*}, \mathrm{~F}^{* *}, \mathrm{~A}^{\mathrm{b}}, \mathrm{D}^{\mathrm{b}}$, $\mathrm{G}^{\mathrm{b}}, \mathrm{F}^{\mathrm{o}} \mathrm{c}$, which yet are fo often wanted that far the greater part of the beft compofiions cannot be performed without them, except: by fubfituting for them $\mathrm{E}^{\mathrm{b}}, \mathrm{B}^{\mathrm{b}}, \mathrm{F}, \mathrm{C}, \mathrm{G}, \mathrm{G}^{*}, \mathrm{C}^{*}, \mathrm{~F}^{*}$, $\mathcal{O}^{\circ} \mathrm{c}$, respectively, which by differing from them by near a fifth part of the tone, make very bad harmony; and as the old expedient for introducing forme of thole founds by inserting more keys in every octave, is quite laid afide by rea. Son of the difficulty in playing upon them; I have therefore invented a better expedient, by caufing the Several keys of tho fe fubfitutes, $\mathrm{E}^{\mathrm{b}}, \mathrm{B}^{\mathrm{b}}, \mathrm{F}, \mathrm{C}$, $\mathrm{G}, \mathrm{G}^{*}, \mathrm{C}^{*}, \mathrm{~F}^{*}, \mathscr{O}^{\circ} c$, to Alike either E^{b} or $\mathrm{D}^{*}, \mathrm{~B}^{\mathrm{b}}$ or $\mathrm{A}^{*}, \mathrm{~F}$ or $\mathrm{E}^{*}, \mathrm{C}$ or B^{*},
(g) Prop. xi. fchol. 4. arr. 7. Sc.

THE PREFACE. xvii

G or $\mathrm{F}^{* *}, \mathrm{G}^{*}$ or $\mathrm{A}^{\mathrm{b}}, \mathrm{C}^{*}$ or $\mathrm{D}^{\mathrm{b}}, \mathrm{F}^{*}$ or $G^{b}, \mathscr{O}^{9} c$.

For fence both the founds in any one of thole couples are Seldom or never used in any one piece of mufic, the mufician by moving a few fops before be begins to play it, cain immediately introduce that found in each couple, which be forefees is either always or ofteneft ufed in the piece before bim.

Two different confluction of thole fops are here described (b), one of which is applicable at a binal expense to any harpfichord ready made, and the other to a new barpfichord, and upon putting therms both in practice, they have perfectly anfwored my expectation.

Several properties and advantages of this changeable foll are deforibed in the eighth Section. In a word, the very wort keys in the common defective foll, by changing a few founds are prefently made as complete as the befit in that Sale, and more harmonious too, because the

(b) Scot. vile. art. 18, 19.
xviii THE PREFACE.
changeable fcale admits of the very beft temperament, and, which is another advantage, will therefore fland longer in tune than the common fcale wbich cannot admit that temperament.

Thefe improvements of the barpfichord, it is boped, may encourage others to apply the like methods to the fcale of the organ, which is equally capable of thems and to greater advantages.

Rob. Smitho

A TABLE of the SECTIONS.

Pag.SECT. I. Pbilofopbical principles of barmonics. ISect. II. Of the names and notation of confonancesand their intervals.9
Sect. III. Of perfect confonances and the order oftheir fimplicity. 14
Sect. IV. Of the antient fyfems of perfect confonances.

$$
23
$$

Sect. V. Of the temperaments of imperfect intervals and their Jynchronous variations. 35
SECT. VI. Of the periods, beats, and barmony of imperfect confonances. 56
SECT. VII. Of a fylem of founds wherein as many concords as pefjible, at a medium of one woith anotber, foall be equally and the moft barmonious.
123
SECT. VIII. The fcale of mufical founds is fully explained and made changrable upon the bartjichord, in order to play all the flat and Barp founds that are ufed in any piece of mufic, upon no otber keys than thofe in common ufe. 160
Sect. IX. Metbods of tuning an organ and otber. inffruncents.
187

[xx]

> SEct. K. Of occafonal temperaments ufed ini concerts well performed upon perfect in= fruments. 225

> SECT. XI. Of the vibraing moiton of a mufical chord. 230

An Appendix containing illuferations and different demonglrations of fome parts of the theory of imperfect confonances. 244

ADVERTISEMENT.

A Complete Sylem of Optics in four Books, viz. a popular, a mathematical, a mechanical and a philofophical treatife, by Dr. Smith: Cambridge 1738, $2 \mathrm{Vol} .4^{\text {to }}$.

Harmonia Menfitarum, five analyfis et fynthefis per rationum et angulorum Menfuras promotæ: accedunt alia opufcula, nempe de Limitibus errorum in mixta mathef, de methodo Differentiarum Newtoniana, de conftructione Tabularum per differentias, de defcenfu Gravium, de motu Pendulorum in cycloide et de motu Projectilium, per Rogerum Cotefum: Edidit et auxit Robertus Smith: Cantabrigiæ 1722, 4^{10}.

Hydrofatical and Pnoumaticial Leciuris by Mr. Cotes, publifhed by Dr. Smith: Cambridge 1747,2 d Edition, . ${ }^{v o}$.

HARMONICS.

SECTION I.
 Pbilofopbical Principles of Harmonics.

I.

SOUND is caufed by the vibrations of elaftic bodies, which communicate the like vibrations to the air, and thefe the like again to our organs of hearing.

Philofophers are agreed in this, becaufe founding bodies communicate tremors to diftant bodies. For inftance, the vibrating motion of a mufical ftring puts others in motion, whofe tenfion and quantity of matter difpofe their vibrations to keep time with the pulfes of air, propagated from the ftring that was ftruck. Galileo explains this phænomenon by obferving, that a heavy pendulum may be put in motion by the leaft breath of the mouth, provided the blafts be often repeated and keep time exactly with the vibrations of the pendulum; and allo by the like art in raifing a large bell; and probably he was the firft that rightly explained that phænomenon (a).
2. If
(a) For he fays, in the perfon of another, il problema poi trito delle due corde tefe all unifono, che al fuono dell'
2. If the vibrations be ifochronous the found is called Mufical, and is faid to continue at the fame Pitch ; and to be Acuter, Sharper or Higher than any other found whofe vibrations are flower; and Graver, Flatter or Lower (b) than any other whofe vibrations are quicker.

For while a mufical ftring vibrates, if its tenfion be increafed or its length be diminifhed, its vibrations will be accelerated; and experience fhews that its found is altered from what is called a graver to an acuter ; and on the contrary. And the like alteration of the pitch of the found will follow, when the fame tenfion is given by a weight, firft to a thicker or a heavier ftring, and after that to a fmaller or a lighter of the fame length, as having lefs matter to be moved by the fame
una l'altera fi muova et attualmente rifuona, mi refta ancora irrefoluto ; come anco non ben chiare le forme delle confonanze et altre particolarità. Dialogo 1° attenente alla Mecanica, towards the end.
(b) As the ideas of acute and high, grave and low, have in nature no neceffary connexion, it has happened accordingly, as Dr. Gregory has obferved in the preface to his edition of Euclid's works, that the more antient of the Greek Writers looked upon grave founds as high, and acute ones as low, and that this connexion was afterwards changed to the contrary by the lefs antient Greeks, and has fince prevailed univerfally. Probably this latter connexion took its rife from the formation of the voice in finging, which Arifides Quintilianus thus defribes. Гive-

 dem gravitas fit, fi cx inferiore parte (gutturis) firitus furfum feratur, acumen vero, fi per fummam partem prorumpat, as Mcibomius tranlates it in his notes. pag. 208.
fame force of tenfion. And thefe changes in the pitch of the found are found to be conftantly greater or leffer, according as the length, tenfion, thicknefs or denfity of the fring is more or lefs altered (c).
3. Therefore if feveral ftrings, however different in length, thicknefs, denfity and tenfion, or other founding bodies vibrate all together in equal times, their founds will all have one and the fame pitch, however they may differ in loudnefs or other qualities, and are therefore called Unifons: and on the contrary, the vibrations of unifons are ifochronous.

This obfervation reduces the theory of all forts of mufical founds to that of the founds of a fingle ftring ; I mean with refpect to their gravity and acutenefs, which is the principal fubject of Harmonics (d).

4. Con-

(c) The Greek muficians rightly defcribe the difference between the manner of finging and talking. They confidered two motions in the voice, x wingess divo; the one
 $x \cdot \dot{\eta}$, the other difcrete and ufed in finging, in $\delta^{\prime} \varepsilon c^{\prime}$ acasn$\mu a \operatorname{lx} x^{\prime} \tau \varepsilon$ xai $\mu s \lambda \omega \rho^{\prime}$ 'xn'. In the continued motion, the voice never refts at any certain pitch, but waves up and down by infenfible degrees; and in the difcrete motion it does the contrary; frequently refting or ftaying at certain places, and leaping from one to another by fenfible intervals: Euclid's Introductio Harmonica, p. 2. I need not obferve, that in the former cafe, the vibrations of the air are continually accelerated and retarded by turns and by very fmall degrees, and in the latter by large ones.
4. Confequently the wider and narrower vibrations of a mufical ftring, or of any other body founding mufically, are all ifochronous very nearly.

Otherwife, while the vibrations decreafe in breadth till they ceafe, the pitch of the found could not continue the fame ; as by the judgment of the ear we perceive it does, if the firft vibrations be not too large: in which cafe the found is a little acuter at the beginning than afterwards.
5. In like manner, fince the pitch of the found of a ftring or bell or other vibrating body, does not alter fenfibly while the hearer varies his diftance from it ; it follows that the larger and leffer vibrations of the particles of air, at fmaller and greater diftances from the founding body, are all ifochronous: and confequently that the little fpaces defcribed by the vibrating particles are every where proportional to the celerity and force of their motions, as in a pendulum (e). And this difference of force, at different diftances from the founding body, caufes a difference in the loudnefs of the found, but not in its pitch.
6. It follows alfo, that the harmony of two or more founds, according as it is perfect or imperfect when heard at any one diftance, will alfo be perfect or imperfect at any other diftance: which

Harmonics is a power apprehending the differences of founds, with refpect to gravity and acutenefs.
(c) See'Newton's Princip. Lib. i1. Prop. 47.

Art. 7. HARMONICS. 5
which being a known fact in a ring of bells for inftance, is mentioned here as a confirmation of thefe principles of Harmonics.
7. If two mufical ftrings have the fame thicknefs, denfity and tenfion, and differ in length only, (which for the future I hall always fuppofe,) mathematicians have demonftrated, that the times of their fingle vibrations are proportional to their lengths (f).
8. Hence if a fring of a mufical inftrument be ftopt in the middle, and the found of the half be compared with the found of the whole, we may acquire the idea of the interval of two founds, whofe fingle vibrations (always meaning the times) are in the ratio of 1 to 2 ; and by comparing the founds of $\frac{2}{3}, \frac{3}{7}, \frac{3}{5}, \frac{4}{5}, \frac{5}{6}, \frac{8}{9}, \frac{9}{10}$, \&c. of the ftring with the found of the whole, we may acquire the ideas of the intervals of two founds, whofe fingle vibrations are in the ratio of 2 to 3,3 to 4,3 to 5,4 to 5,5 to 6 , 8 to 9,9 to $\mathrm{Io}, 8 \mathrm{c}$.
9. A Mufical Interval is a quantity of a certain kind (g), terminated by a graver and an acuter found.
(f) As a clear and exact demonfration of this curious Theorem depends upon one or two more, of no fmall ufe in Harmonics, and requires a little of the finer fort of geometry, which cannot well be applied in few words, I have therefore referved it to the laft Section of this Treatife; which the reader may confult, or, taking it for granted at prefent, may proceed without interruption; as he likes beft:
(g) See Dr. Wallis's preface to Porphyry's comment on Ptolemy's Harmonics. Oper. Math. vol. Inr. Euclia \{ars, A 3 an

In a ring of bells, for example, the founds of the firft and fecond bells, counting either from the biggeft or the leaft, terminate a certain interval; thofe of the firft and third a greater interval ; thofe of the firft and fourth a greater ftill ; \&c. So that the interval increafes by degrees, either as the graver of the two founds defcends, or as the acuter afcends; and within the interval of the founds of the biggeft and leaft bells, the intervals between the founds of all the reft are contained.

1o. Mufical intervals are Meafures of the Ratios of the times of the fingle vibrations of the terminating founds, or, cateris paribus, of the lengths of the founding ftrings (b).

For it is obfervable in the experiments laft mentioned (i) and is univerfally allowed by muficians, that when the lengths of thofe ftrings have
 ¿乡乡ंtnil rai $\beta a p u ́ t n$ nl, what is contained by two founds different in gravity and acutenefs. Introductio Harmonica p. I. Ariftoxenus defines a mufical found thus, φ ovñs whw̃-

 intervallum vero eft, quod duobus fonis, non eandem tenfionem habentibus, terminatur. And he adds, that it is

 eas; a place capable of founds, that are acuter than the graver of the two tenfions (tones or founds) that terminate the interval, and graver than the acuter of them. pag. 15 .

$$
\text { (b) Article } 7 . \quad \text { (i) Art. } 8
$$

have the fame ratio, the interval of their founds is the fame, whatever be their pitch; that if the acuter of the two founds be raifed higher, and confequently the ratio of the lengths of thofe ftrings be increafed, the interval is increafed; and on the contrary, if the acuter found be depreffed lower, that the faid ratio and interval are diminifhed, and reduced to nothing when the ftrings have the ratio of equality whofe magnitude is nothing.

Plate I. Fig. 1. Now let the times of the fingle vibrations of the ftrings $A, B, C, D, \& \mathrm{c}$, be continual proportionals in any ratio. Then fince the interval of the founds of A and B is equal to that of B and C, or of C and $D, \& c$, by adding equal intervals together and equal ratios together, it follows, that the interval of the founds of A and C, whofe ratio is duplicate of A to B or of B to C, is double the interval of the founds of A and B, or of B and C; and that the interval of the founds of A and D, whofe ratio is triplicate of A to B, is alfo triple the interval of the founds of A and B, or of B and C or of C and D. So that the interval of the founds of A and C, is to that of A and D, as 2 to 3 ; and the like is evident of any other equimultiples of the propofed ratios and intervals, whatever be their number and magnitude,
II. Therefore mufical intervals are proportional to the logarithms of the ratios of the fingle
A 4 vibra-
vibrations of the terminating founds, or, ceteris paribus, of the lengths of the vibrating ftrings. Becaufe logarithms are numeral meafures of ratios; and all forts of meafures, of the fame magnitudes are proportional to one another (k).
12. For brevity fake the word vibration is often ufed for the time of a complete vibration, which paffes between the departure of the vibrating body from any affigned place and its return to the fame. Such is the time between the fucceffive pulfes of air upon the ear; a pulfe being made while the air is compreffed and condenfed in its progrefs, but not in its regrefs; it being then relaxed and rarified to a greater degree than the quiefcent air is (l). And though the pulfes of founds of a different pitch have different durations, they may yet be abftractly confidered as if they were inftantaneous; by taking only the middle inftant of each pulfe.
(k) See Mr. Cotes's Harmonia Menfurarum, pag. r.
(l) See Newton's Principia, Book 2. Prop. 43. Caf. I.

SECTION II.

Of the Names and Notation of confonances and their intervals.
I. Dlate I. Fig. 2. If a mufical ftring $C O$ and its parts $D O, E O, F O, G O, A O$, $B O, c O$, be in proportion to one another as the numbers $\mathrm{I}, \frac{8}{5}, \frac{4}{5}, \frac{3}{4}, \frac{2}{3}, \frac{3}{5}, \frac{8}{15}, \frac{1}{2}$, their vibrations will exhibit the fyftem of 8 founds which muficians denote by the letters C, D, E, F, G, A, B, c.

Fig. 3. And fuppofing thofe ftrings to be ranged like ordinates to a right line $C c$, and their diftances $C D, D E, E F, F G, G A, A B, B C$, not to be the differences of their lengths, as in fig. 2, but to be of any magnitudes proportional to the intervals of their founds, the received Names of thefe intervals are fhewn in the following Table; and are taken from the numbers of the ferings or founds in each interval inclufively; as a Second, Third, Fourth, Fifth, $\& c$, with the epithet of major or minor, according as the name or number belongs to a greater or fmaller total interval ; the difference of which refults chiefly from the different magnitudes of the major and minor fecond, called the Tone and Hemitone.

$$
C .:
$$

$$
\begin{aligned}
& C \ldots D \ldots E \cdot F \ldots G \ldots A \ldots B \cdot C \ldots \\
& 1 \ldots \frac{8}{9} \ldots \frac{4}{5} \cdot \frac{3}{4} \ldots \frac{2}{3} \ldots \frac{3}{5} \ldots \frac{8}{15} \cdot \frac{1}{2} \ldots
\end{aligned}
$$

Perfect Ratios, Interval's Names, Marks, Elements.

$C: c:: 2: 1\|C c\|$	Octave	VIII	$3 T+2 t+2 H$
$\overline{B: c:: 16: 15}$ $\overline{B c}$ $C: B:: 15: 8$ $C B$	Hemitone VII major		$3 \mathrm{~T}+2 \mathrm{t}+\mathrm{H}$
$\begin{array}{\|l\|l\|} \hline C: D:: 9: & C D \\ D: c: 16: & \\ \hline \end{array}$	Tonemajor $7^{\text {th }}$ minor	$\begin{gathered} \mathrm{T} \text { or II } \\ 7^{\text {th }} \end{gathered}$	$2 \mathrm{~T}+2 \mathrm{t}+2 \mathrm{H}$
$\bar{A}: c::$ $6: 5$ $C: A:: 5: 3$	3^{d} minor VI major	$\begin{aligned} & 3^{\mathrm{d}} . \\ & \mathrm{VI} \end{aligned}$	$\begin{aligned} & T+H \\ & 2 T+2 t+H \end{aligned}$
$\begin{array}{\|l\|l\|} \hline C: E:: & 5: \\ E: c:: & 8: \\ \hline C E & 5 \\ E & \end{array}$	III major 6th minor	$\begin{aligned} & \text { III } \\ & \text { 6th } \end{aligned}$	$\begin{gathered} \mathrm{T}+\mathrm{t} \\ 2 \mathrm{~T}+\mathrm{t}+2 \mathrm{H} \end{gathered}$
$G: c:: 4:$ 3 $C: G:: 3:$ $\overline{G C}$ F	$4^{\text {th }}$ minor V V major	$\stackrel{4 \text { th }}{V}$	$T+t+H$ $2 T+t+H$
$\overline{F: B:: 45: 32}$ FB	IV major	IV	$2 \mathrm{~T}+$
$B: f:: 64: 45$ Bf	$5^{\text {th minor }}$	$5^{\text {th }}$	$\mathrm{T}+\mathrm{t}+2 \mathrm{H}$
$\begin{array}{r} \overline{D: E:: 10: 89} \\ 81: 80 \end{array}$	Toneminor Comma	$\begin{aligned} & \mathrm{t} \\ & \mathrm{c} \end{aligned}$	T-

2. Hence it is, if the ratio of the fingle vibrations of any two founds, or, cateris paribus, of the lengths of two vibrating ftrings, be any of thofe in the firft column of the table, that their interval, and the confonance too, retains the name in the third column, whether the intcrmediate founds be prefent or abfent.
3. Fig. 3. In the line $C c$ produced beyond c, if we take the intervals $D d, E e, F f, \& c$, fe-

Art. 4. HARMONICS.
verally equal to the octave $C c$, and make the length of the feveral ftrings at $d, e, f, \& \mathrm{c}$, equal to half the lengths of thofe at D, E, F, $\& c$, all the intervals within this higher octave $c e$, , will alfo confift of major and minor tones and hemitones, ranged in the fame order as in the lower octave Cc.

And the names of intervals larger than one or more octaves, are alfo taken from the number of the ftrings in them inclufively. Thus the interval $C d$ is called a Ninth, $C e$ a Tenth, $C f$ an Eleventh, $C g$ a Twelfth, $\& \mathrm{c}$, with the epithet of major or minor as before; and are thus denoted, ix or viil + II, x or viil + III, $\mathrm{II}^{\text {th }}$ or viII $+4^{\text {th }}$, XII or $\mathrm{viII}+\mathrm{v}, \& \mathrm{c}$, the units in the compound marks being conftantly one more than thofe in the fimple ones, becaufe the intermediate ftring at the end of the octave is counted twice. The fame is to be underftood in all compounded notations.
4. A Comma is the interval of two founds whofe fingle vibrations have the ratio of 8 I to 80 , and is the difference of the major and minor tones (m).
5. Any one of the ratios in the firft column of the foregoing Table, except 80 to 8 I, or any one of them compounded once or oftener with the ratio 2 to I or I to 2 , is called a Perfect ratio when reduced to its leaft terms. And when the times
(m) For the ratio of 9 to 8 diminifhed by the ratio of 10 to 9 , is the ratio of 9×9 to 8×10, or of 81 to 80 .
times of the fingle vibrations of any two founds have a perfect ratio, the confonance and its interval too is called Perfect ; and is called Imperfect or Tempered when that perfect ratio and interval is a little increafed or decreafed.
6. Any fmall increment or decrement of a perfect interval is called refpectively the Sharp or Flat Temperament of the imperfect confonance, and is meafured moft conveniently by the proportion it bears to a comma.
7. As the addition and fubtraction of logarithms anfwers to the multiplication and divifion of their correfponding Tabular numbers, that is, to the compofition and refolution of the ratios of thofe numbers to an unit ; fo the addition and fubtraction of mufical intervals anfwers to the compofition and refolution of the ratios of the fingle vibrations of the terminating founds, or, cateris paribus, of the lengths of the vibrating ftrings : and on the contrary.

In the following examples, the compofition and refolution of perfect ratios is intimated by the multiplication of their terms, placed, in the form of fractions, upright and inverted, refpectively.

Art. 8. HARMONICS.
$\left\{\begin{array}{l}\text { As } \frac{1}{2}=\frac{8}{15} \times \frac{15}{16}=\frac{9}{16} \times \frac{8}{9}=\frac{3}{5} \times \frac{5}{6}= \\ \end{array}\right.$ $\left\{\right.$ Sovili $=\mathrm{v}_{\text {II }}+2^{\mathrm{d}}=7^{\text {th }}+{ }_{\mathrm{II}}=\mathrm{vI}+3^{\mathrm{d}}=$
$\frac{5}{8} \times \frac{4}{5}=\frac{2}{3} \times \frac{3}{4}=\frac{8}{9} \times \frac{8}{9} \times \frac{8}{9} \times \frac{9}{10} \times \frac{9}{10} \times \frac{5.5}{16} \times \frac{5}{18}$.
$6^{\text {th }}+1 \mathrm{HI}=\mathrm{v}+4^{\text {th }}=3 \mathrm{~T}+2 \mathrm{t}+2 \mathrm{H} \quad(\mathrm{n})$.

As $\frac{3}{4} \times \frac{6}{5}=\frac{9}{10}$	$\frac{3}{4} \times \frac{5}{4}=\frac{15}{16}$	$\frac{8}{9} \times \frac{10}{9}=\frac{80}{8 \mathrm{I}}$
So $4^{\text {th }}-3^{\mathrm{d}}=\mathrm{t}$	$4^{\text {th }}-111=$	$\mathrm{T}-\mathrm{t}=\mathrm{c}$.

8. Hence the hemitones, and tones major and minor, being the differences of the intervals, III, $4^{\text {th }}, \mathrm{v}, \mathrm{vI}$, and of their compliments to the octave, may be confidered as the Elements that compound the intervals of all perfect concords,
(n). See the Column of Elements in the foregoing Table.
cords, as in the laft column of the former Table compared with Fig. 3. So that the leaft intervals in a mufical fcale are founded upon the harmony of the concords (o).

S E C T I O N III.

Of perfect confonances and the Order of their fimplicity.

'Plate I. Fig. 4. When a fingle found is heard, the feries of equal times between the fucceffive pulfes of air that beat on the ear (p), may be reprefented by a feries of equal parts contained in a right line; as in $02, \mathrm{O}_{3}$, 04, \&c. Confequently when two founds are heard, two of thofe lines, as O_{2} and \circ_{3}, will rightly reprefent the two feries of equal times, if the magnitude of the equal parts in one line, be to the magnitude of thofe in the other, in the ratio of the fingle vibrations of the founds: or, the whole lines being fuppofed equal, if the numbers of aliquot parts in each, as 2 and 3, be feverally the fame as the leaft numbers of the vibra-
(o) The old method of refolving concords into their elements may be feen in Dr. IVallis's divifion of the monochord, or fection of the mufical Canon, as the antients called it. Philofoph. 'Tranfact. No. 238. or Abridg. by Lowthorp. vol. I. p. 698. firft edit.

vibrations of each found, made in the fame time reprefented by the line 02 or $\mathrm{O}_{3}(\mathrm{q})$.
2. And the founds being heard together, if we conceive the two equal and parallel lines that rightly reprefent them, as 02 and 03 , to coincide throughout, the points that divide the feparate lines, will fubdivide the combined lines into fmaller portions, as in Fig. 5, reprefenting a third feries or Cycle of times, in which the pulfes of both founds interchangeably fucceed one another in beating upon the ear.
3. Such a mixture of pulfes, fucceeding one another in a given cycle of Times, terminated at both ends by coincident pulfes, and fufficiently repeated, is the phyfical caufe that excites the fenfation of a given confonance: Efpecially when confidered as diftinct from any other confonance, whofe fingle vibrations having a different ratio from that of the former, will conflitute a different cycle, and excite a different fenfation. But if that ratio be the fame, though the abfolute times be different, the confonances are fimilar and may be looked upon as the fame in this refpect, that their cycles have the fame form; the times in both having the fame order, and the fame proportions; and in this other alfo, that the interval of the founds is the fame (r).
4. This being premifed, one confonance may be confidered as more or lefs fimple than another, ac-

[^0]according as the cycle of times belonging to it, is more or lefs fimple than the cycle belonging to the other. And upon this principle all confonances may be ranged in due Order of fuch fimplicity, by the help of the following Rule.
5. One Confonance is Simpler than another in the fame Order, as the fim of the leaft terms, exprefing the ratio of the fingle vibrations, is finaller. than the like fum in the other confonance; and woben feveral fuch fums are the fame, thefe confonances are fimpler in the fame order, as the leffer terms of their ratios are finaller.

For the fimplicity of a confonance or cycle of times, confifts partly in the number of times contained in the cycle, and partly in the different proportions they bear to one another.

Fig. 4. When the numbers of times in different cycles are different, and the times in each cycle are equal to one another, as when we combine the founds OI and OI, OI and O2, OI and 03 , OI and 04, OI and $05,8 \mathrm{c}$, the cycles of this fort may be ranged in the order of their fimplicity above defined, by the order of the numbers of equal times in the cycles, or of the magnitudes of the numbers $1,2,3,4,5,6,8 \mathrm{kc}$, or of $2,3,4,5,6,7,8 \mathrm{cc}$, that is, of the fums of the terms of the ratios I to 1 , I to 2 , I to 3 , I to 4 , I to $5, \& \mathrm{c}$.

In the other care, where the numbers of times in different cycles are the fame, and the times in each cycle bear different proportions to one another, as when we combine the founds or and o6,

06,02 and 05,03 and 04, that cycle is fimpler than another, in which the equal times between the pulfes of the acuter found, are lefs interrupted and fubdivided by the pulfes of the graver.

Accordingly in the firft of thefe cycles compofed of or and 06 , not one of the 6 equal times between the pulfes of the acuter found 06 , is fubdivided by any pulfe of the graver OI ; but in the fecond cycle compofed of 02 and 05 , one of the 5 equal times, between the pulfes of the acuter found 05 , is fubdivided by one pulfe of the graver 02 ; and in the third cycle compofed of 03 and 04, two of the 4 equal times in the acuter found 04 , are fubdivided by 2 pulfes of the graver 03 . By which it appears, that the firf cy cle is fimpler than the fecond, and the fecond fimpler than the third; and that the order of fimplicity of this fort of cycles, anfwers to the order of the magnitudes $1,2,3$ of the leffer terms of the ratios.
6. Now by the firft part of the rule above, the integers in the fecond column of the following table, are the feveral fums of the terms of the oppofite ratios in the firft, diminifhed by 1 , which alters not the order of their magnitudes, but only makes the feries begin with I, anfwering to the fimpleft confonance.

By the fecond part of the rule, the ratios whofe terms have the fame fum, as $1: 6,2: 5,3: 4$, are ranged in the order of their leffer terms 1,2 , 3 , or, which alters not the order, of thofe terms feverally diminifhed by 1 , as of $0,1,2$, or of the B fractions

A table of the Order of the fimplicity of confonances of two founds.

Ratios of the	Order of the	Intervals of the	Continuation of the table.		
vibrations.	fimplicity.	founds.	I : 15	15	$\overline{3 V I I I+V I I}$
$\overline{1: ~} 1$,		16	16	4 VII
1: 2	2	VIII	2: 15	$16 \frac{1}{8}$	$2 \mathrm{VIII}+\mathrm{VII}$
1: 3	3	VIII + V	5: 12	$16 \frac{1}{2}$	VIII $+3^{\text {d }}$
I : 4	4	2VIII			T
2: 3	$4 \frac{1}{2}$	2 Fri	$1: 18$	18	$4 \mathrm{VIII}+$
			3: 16	$18{ }^{2}$	$2 \mathrm{VIII}+4^{\text {th }}$
	5	$\underline{2 V I I I+111}$	4: 15	$18 \frac{1}{3}$	VIII + ViI
1: 6	6	$2 \mathrm{VIII}+\mathrm{V}$	9:10	$18 \frac{8}{9}$	t
2: 5	$6 \frac{1}{3}$	VIII + III	I : 20	20	4VIII + III
$3: 4$	$6 \frac{2}{3}$	$4^{\text {th }}$	5:16	20^{2}	viII +6 h
1:7	7		I : 22	22	
3: 5	$7 \frac{2}{3}$	VI	3:20	$22 . \frac{2}{11}$	$2 \mathrm{VIII}+\mathrm{VI}$
1: 8	8	3VIII	5:18	22 $\frac{4}{1 T}$	$\mathrm{VIII}+7^{\text {th }}$
4: 5	$8 \frac{3}{4}$	III	8: 15	$22 . \frac{7}{1 T}$	VII
9	9	$\frac{3 \mathrm{VIII}+\mathrm{T}}{3 \mathrm{VIIT}+\mathrm{II}}$	$1: 24$ $9: 16$	24 4 4	$\begin{aligned} & 4 \text { vili }+v \\ & 7 \text { th } \end{aligned}$
1 : 10	10	$3 \mathrm{VIII}+\mathrm{III}$	9:108	4 28	
$2:$ $3:$ 9	$10 \frac{1}{5}$	VVIII +T $\mathrm{VIII}^{\text {+ }}$ + ${ }^{\text {th }}$	$1: 28$ 5		
3: 8	102 10 10	${ }_{3 \mathrm{diII}}^{\text {d }}+4^{\text {th }}$	5: 24 9:20	28. 28. 28.	${ }_{\text {2VIII }}^{\text {VIII }}+3^{\text {d }}$
5: 6	$10 \frac{4}{5}$	$3^{\text {d }}$	9:20	28.7	vinit
I : I2	12	3VII	1:30	30	$4 \mathrm{VIII}+\mathrm{VII}$
3:10	$12 \cdot \frac{1}{7}$	VIII + VI	15: 16	$30 \frac{1}{15}$	H
4: 9	$12 . \frac{1}{2}$	VIII +T			
5.8	$12 . \frac{2}{3}$	6*h	32:45	76.31	IV
6:7	$12{ }_{6}^{5}$		45:64	$108 \frac{2}{2} 7$	$5^{\text {th }}$

Art. 7. HARMONICS.
fractions $\frac{\circ}{3}, \frac{1}{3}, \frac{2}{3}$, whofe common denominator 3 is the number of the ratios whofe terms have the fame fum 7. Thefe fractions either by themfelves or the mixt numbers $6,6 \frac{1}{3}, 6 \frac{2}{3}$, made by annexing them to the number 6 , may therefore denote the order of the Modes of fimplicity of fuch confonances as have the fame Degree of fimplicity denoted by 6 or 7-I. And thus the order of the fimplicity of all confonances whatever, is denoted by the order of the magnitudes of the integers and mixt numbers in the fecond column of the table.
7. This feries increafes from unity in feveral arithmetical progreffions, except that a term or two is here and there omitted, where ratios occur which being reducible to fimpler terms, have been confidered before, or elfe are not Perfect Ratios, which are fuch only whofe terms are $1,2,3,5$, with their powers and products (s).

For example, writing down all the ratios in due order, whofe terms make a given fum, as i to 8 , 2 to 7,3 to 6,4 to 5 , I reject the two middlemoft for the reafons juft mentioned, and place the reft in the firft column of the table; which may thus be continued with certainty and order as far as we pleafe.
8. Hence we may diftinguilh confonances into two forts, Pure and Interrupted; pure, where none of the equal times between the pulfes of the acuter found, is fubdivided by any interme-

B 2 diate
(s) Sect. II. art. 5 .
diate pulfe of the graver; and interrupted, when any of thofe equal times are interrupted by one or more pulfes of the graver found.

In the fecond column of the table, the leaft fimple or loweft mode of each degree of interrupted confonancy, is every where placed above the next inferior degree of pure confonancy, as $4^{\frac{1}{2}}$ above 5 .

For fhould we deprefs the mode $4 \frac{1}{2}$ to a place next below the degree 5 , why not even to a place next below 6? though not below $6 \frac{1}{3}$, as being a more complex mode of a lefs fimple degree. But if that were allowable, by parity of reafon we ought to deprefs $4 \frac{1}{2}, 6 \frac{1}{3}, 6 \frac{2}{5}$, next below 7 , though not below $7^{\frac{2}{3}}$, and likewife $4 \frac{2}{2}, 6 \frac{2}{3}, 6 \frac{2}{3}$, $7_{\frac{2}{7}}^{2}$, below 8 , though not below $S_{\frac{3}{4}}^{3}$, and alio $4 \frac{1}{2}, 6 \frac{1}{3}, 6 \frac{2}{5}, 7 \frac{2}{3}, 8 \frac{3}{7}$ below 9 and 10 , and fo forth to infinity: which, by depreffing all the modes of interrupted confonancy, below all the degrees of pure confonancy, would render them heterogeneal, and incapable of any order or comparifon with one another. The table is therefore rightly ordered.
9. Hitherto we have only confidered the number and proportions of the times in the cycle by which a confonance is reprefented, without regard to the quality of the pulfes, as to magnitude, duration, ferength, weaknefs or other accidents; whereas the pulfes of graver founds are generally ftronger, larger, obtufer, and of longer duration than thofe of acuter founds, and affect the car differently. But ftill this alters not the rational idea of the confonance, as above defcribed, provided
provided we take the middle inftant of each pulfe as we did in Art. I; nor does the ear perceive any alteration in the kind of mixture, or in the interval upon foftening or fwelling either found, while the other retains the fame ftrength.
10. It is well known in general, that fimpler confonances affect the ear with a fimoother and pleafanter fenfation, and the lefs fimple with a rougher and lefs pleafant one. And this analogy feems to hold true according to the order in the table, as far as the ear can judge with certainty. Thofe that are willing to try the experiment, may readily do it by the help of the third column of the table, fhewing the mufical intervals anfwering to the refpective confonances. But the analogy will be plainer perceived by intermitting feveral confonances, and trying it, for example, in this feries of all the concords not exceeding the octave; viII, $\mathrm{v}, 4^{\text {th }}$, VI, III, $3^{\text {d }}, 6^{\text {th }}$; but then they fhould not be tempered as ufual, but tuned perfect. And if the experimenter be fkilful in melody and compofition, he muft endeavour, as much as pofible, to diveft himfelf of all habitual prepoffeffions in favour of this or that concord, or fucceflion of concords, acquired from the rules and practice of his art ; in order to an impartial judgment of the fimple perception of the finoothnefs and fiweetnefs of each concord, and a fair comparifon of fuch perceptions only.
II. Though nature has appointed no certain limit between concords and difcords, yet as muficians diftinguifh confonances by thofe names for B 3 their
their own ufes, I may do the like for mine ; calling unifons, $1 I^{\text {ds }}$, $v^{\text {ths }}$ and $\mathrm{v}^{\text {ths }}$, and their complements to the virir ${ }^{\text {th }}$ and compounds with viri ${ }^{\text {ths }}$, Concords, and all other confonances, Difcords.
12. If the times of the fingle vibrations of any two founds be V and v, and if $V: v:: \mathrm{R}: r$, reprefenting the leaft integers in that ratio ; the length of the cycle of times between the fucceffive coincidences of the pulfes of V and v, is $r \mathrm{~V}=\mathrm{Rv}$. Becaufe thefe multiples of V and v are the leaft of any that can be equal.

For the fame reafon, if $V: x:: S: s$ in the leaft integers, the cycle $s \mathrm{~V}=\mathrm{S} x$.
13. Hence the length of the cycle of V and v, is to that of V and x, as r to s; that is, the cycles of confonances that have a common found or vibration V, are proportional to the Numerators of the fractions $\frac{r}{\mathrm{R}} \mathrm{V}=v, \frac{s}{\mathrm{~s}} \mathrm{~V}=x$, expreffing the times of the fingle vibrations of the other founds, as in Fig. 3, or to the leffer terms of the ratios in the firft column of the table of the order of the fimplicity of confonances.
14. Confequently were the degrees of fimplicity of confonances to be eftimated by the frequency of the coincidences of their pulfes, or the fhortnefs of their cycles, as is commonly fuppofed ; the unifons, vili ${ }^{\text {ths }}$, viII $+v^{\text {ths }}, 2$ vini $^{\text {ths }}$, 2 viII + III ${ }^{\text {ds }}, \& \& \mathrm{c}$, whofe cycles are but I vibration of the bafe, would be equally fimple; and the fame may be faid of the $\mathrm{v}^{\text {ths }}$, vili $+\mathrm{III}^{\mathrm{ds}}$, 2 vini $+T^{s}, \& c$, whofe feveral cycles are but 2
vibrations of the bafe; and the fame alfo of all confonances having the fame number for the leffer term of their perfect ratios; which fhews that the frequency of coincidences is, of itfelf, too general a character of the fimplicity or fmoothnefs of a confonance, and therefore an imperfect one.

SECTION IV.

Of the antient Syfems of perfect

confonances.

1. F no other primes but $\mathrm{I}, 2,3$ were admitted to the compofition of perfect ratios, a fyftem of founds thence refulting could have no perfect thirds ; nor any perfect confonance whofe vibrations are in any ratio having the number 5 , or any multiple of it, for either of its terms, as 5 to 4,6 to 5 , 10 to 9 , 16 to $15,8 \mathrm{cc}$: it being impoffible for any powers and products of the given primes $1,2,3$ to compofe any other prime or multiple of it.
2. Fig. 3. The minor tones $D E, G A$ being thus excluded, and major tones being put in their places, every perfect major 111^{d} will be increafed by a comma, as being the difference of the tones (t); and every hemitone and perfect minor $3^{\text {d }}$ will be as much diminifhed; becaufe the $4^{\text {ths }}$ B 4 and
(t) Sect. ir. Art. As. on the primes $1,2,3$, only.
3. Thefe diminifhed hemitones being called Limmas, the octave is now divided into 5 major tones and 2 limmas; as reprefented to the eye in Plate II. Fig. 6; where the confonances whofe vibrations are expreffed by fuch high terms as the powers of 8 and $9,8 \times \mathrm{c}$, mult needs be difagreeable to the ear, according to the foregoing analogy between the agreeable fmoothnefs of a confonance and the fimplicity of the numbers expreffing the ratio of its vibrations (u) : and that in reality they are fo, any one will foon find if he pleafes to try the following experiment.
4. Fig. 6. Afcending by a perfect $v^{\text {th }}$ and defcending by a perfect $4^{\text {th }}$ alternately, upon an or gan or harpfichord tune the following founds, from F to C, C to G, G to D, D to A, A to E, E to B, and the octave $F f$ will then be divided into 5 major tones and 2 limmas; becaufe the differences of thofe fucceffive $v^{\text {th }}$ and $4^{\text {ths }}$ are major tones.

Then having tuned perfect octaves to every one of thofe notes, try the confonances that would be perfect if the number 5 were admitted, as thirds major and minor, with their complements to the vini ${ }^{\text {th }}$ and compounds with vint ${ }^{\text {ths }}$; and you will find them extremely difagreeable (x). 5. But

(u) Sect. III. Art. Io.

(x) The $\mathrm{v}^{\text {th }}$ and $4^{\text {ths }}$ being tuned by the judgment of the ear, if any one doubts whether their fingle vibrations
5. But if 5 be admitted among the mufical primes, the ratios io to 9 and 16 to 15 , belonging to the minor tone and the hemitone, are allo admitted, and the elements that now compofe the octave, are 3 major tones, 2 minor and 2 hemitones, as in Fig. 3.

PROPOSITION I.

ASyfem of founds whofe elements or fmalleft intervals are tones major and minor and bemitones, will necelfarily contain fome imperfect concords.
6. Whatever be the order of thofe elements in any one octave, it muft be the fame in every one; to the end that every found may have a perfect octave to it, as being the beft concord. And in order to have as many perfect $v^{\text {ths }}$ as poffible, and confequently viri $+\mathrm{v}^{\text {ths }}$, which concords are the fecond beft (y), the elements muft be ranged in fuch order, that the contiguous couples fhall make as many perfect thirds as poffible, both major
be as 3 to 2 and 3 to 4 , let the Mufician compare the found of $\frac{2}{3}$ of a mufical fring, and alfo $\frac{3}{4}$ of it with that of the whole, and he will acknowledge thefc concords and thofe which he tuned upon the inftrument to be the fame, and of confequence to have the fame ratios of their fingle vibrations.
(y) See the table of the order of concords in Sect. III. Art. 5.
jor and minor; thefe being the intervals which compofe the perfect $\mathrm{v}^{\text {ths }}$. And that order being rightly determined, we fhall have the greateft number of perfect concords of all forts. Becaufe the complements to the octave, of perfect thirds and $v^{\text {ths }}$, will alfo be perfect, and fo will their compounds with any number of ViII ${ }^{\text {ths }}$.

Now it is obfervable of the feven elements T , 'T, T, t, t, H, H, which compofe an octave, that T and H, T and t are the only couples which make perfect thirds (z), all the reft, T and T, t and t, t and H, H and H , making thirds imperfect by a comma, except H and H , which compofe an imperfect tone, bigger than the major tone by almoft a comma (a).

Hence either T and H , or T and t muft be the outermoft elements in the octave, as in the following table.

For if the firft element in every octave in the fyftem be T and the feventh be H , the feventh in any octave, combined with the firft in the next octave, will compofe the interval $\mathrm{H}+\mathrm{T}$ of a perfect

$$
\begin{aligned}
& \text { (z) Scet. II. Art. } 5 \text { and } 7 . \\
& \text { (a) Putting } \mathrm{H}=\log \cdot \frac{16}{15}=0.02803 \\
& \text { Then } 2 \mathrm{H}=2 \times \log \cdot \frac{16}{15}=0.05606 \\
& \text { And } \mathrm{T}=\log \cdot \frac{9}{8}=0.05115 \\
& \text { Whence } 2 \mathrm{H}-\mathrm{T}=\overline{0.00491} \\
& \text { And the Comma }=\log \cdot \frac{81}{80}=0.00540 \\
& \text { Difference } \overline{0.00049}
\end{aligned}
$$

perfect minor 3^{d}, and thus the contiguous octaves will be joined in perfect concord.

Table of the Elements.

8 c 7	12	4	$6 \quad 7$	18 c
$\operatorname{Caf.} \mathrm{r} .\left\{\begin{array}{l} \mathrm{H} \\ \end{array}\right.$	$\mathrm{T}+\mathrm{t}$	$\left\|\begin{array}{c}\mathrm{H}+\mathrm{T}+\mathrm{t} \\ \mathrm{t}+\mathrm{T}+\mathrm{H}\end{array}\right\|$	$\mathrm{T}+\mathrm{H}$	T
(H)	$\mathrm{T}+\mathrm{H}$	$\mathrm{t}+\mathrm{T}+\mathrm{t}$	$\mathrm{T}+\mathrm{H}$	T
	$\mathrm{T}+\mathrm{t}$	$\mathrm{H}+\mathrm{T}+\mathrm{H}$	T+t	T
$\operatorname{Caf.2.}\left\{\begin{array}{l} \mathrm{t} \\ \mathrm{t} \end{array}\right.$	$\mathrm{T}+\mathrm{H}$	$\left\|\begin{array}{c} \mathrm{t}+\mathrm{T}+\mathrm{H} \\ \mathrm{H}+\mathrm{T}+\mathrm{t} \end{array}\right\|$	$\mathrm{T}+\mathrm{t}$	T

Likewife if the firft element in every octave be T and the feventh be t, here alfo the feventh in any octave, together with the firft in the next octave, will compofe the interval $t+\mathrm{T}$ of a perfect major in ${ }^{\text {d }}$, and thus the contiguous octaves will again be joined in perfect concord; and in no other cafe befides thofe two, as appears by the obfervation above.

Caf. i. Now if the fecond element be t, the firft joined to it compofes the perfect major in ${ }^{\mathrm{d}}, \mathrm{T}+t$. And if the fixth element be T , the feventh joined to it will compofe the perfect minor third $\mathrm{T}+\mathrm{H}$.

Two of the feven elements in the octave being thus difpofed of at each end of it, the contiguous
couples
couples of the remaining three cannot compofe perfect thirds in any order different from this, $\mathrm{H}+\mathrm{T}+t$, or its reverfe $t+\mathrm{T}+\mathrm{H}$; both which being transferred into the interval between thofe extreme couples, hew, that the elements in the fecond and third places, compofe either the imperfect minor third $t+\mathrm{H}$, or the imperfect major third $t+t$.

If H be the fecond element, as in the third rank of the table, the firt couple does now compofe the perfect minor third $\mathrm{T}+\mathrm{H}$, and the laft being alfo $\mathrm{T}+\mathrm{H}$, as before, the three remaining elements muft have this order $t+\mathrm{T}+t$, to make perfect thirds of their contiguous couples; and being thus transferred into the interval between thole extreme couples, they fhew, that the fecond and third elements do again compofe an imperfect minor third $\mathrm{H}+t$.

Caf. 2. Here alfo the fixth element muft be T, fince no other joined to the feventh can make a perfect third, as $\mathrm{T}+t$.

Now if the fecond eiement be t, this joined to the firft makes the perfect major third $\mathrm{T}+t$. And two of the feven elements in the octave being thus joined at each end of it, the contiguous couples of the remaining three, cannot compofe the intervals of perfect thirds in any order different from this, $\mathrm{H}+\mathrm{T}+\mathrm{H}$; which being transferred into the interval between the extreme couples, Shews, that the fecond and third elements do here alfo compofe the interval $t+\mathrm{H}$ of an imperfect minor third.

If H be the fecond element, as in the next lower ranks, then the firt couple compofe the interval $\mathrm{T}+\mathrm{H}$ of a perfect minor 3^{d}, and the laft couple being $\mathrm{T}+t$ as before, the three remaining elements muft have this order, $t+\mathrm{T}+\mathrm{H}$, or its reverfe, $\mathrm{H}+\mathrm{T}+t$, for the reafon above; and being thus transferred into the middle interval, they fhew, that the elements in the fecond and third places do again compofe an imperfect minor third, $\mathrm{H}+t$, or elfe an imperfect tone $\mathrm{H}+\mathrm{H}$; which being joined to the major tone on either fide of it, compofes an imperfect major third, greater than $t+\mathrm{T}$ by almoft two commas, as appears by the preliminary obfervation.

Now any one of thofe imperfect minor thirds, $t+\mathrm{H}$, together with the contiguous perfect major III ${ }^{\text {d }}$, compofes a fifth equally imperfect, and fo does the imperfect major third $t+t$ with the perfect minor third next to it. And the complements to the virit ${ }^{\text {th }}$ of thefe imperfect concords, as well as their compounds with viir ${ }^{\text {ths }}$, are alfo equally imperfect, which proves the propofition. For having fhewn the neceffary defects in thofe fix arrangements of the feven elements, we are freed from the trouble of confidering the reft (b). Q.E. D.
7. Coroll. Of thofe fix arrangements of the elements, the firt and fifth in the table are equally
(b) Mr. De Moivre's general corollary to the xvi problem of his Doctrine of Chances, gives 210 permutations of thefe feven things, T, T, T, t, t, H, H.
good, and better than any one of the reft, as producing as many perfect thirds, and a greater number of perfect $v^{\text {ths }}$.

Pl.II. Fig. 7. In order to enumerate them with certainty and eafe, if the circumference of a circle, be divided into feven arches, $C D, D E, E F$, $F G, G A, A B, B C$, proportional to $\mathrm{T}, t, \mathrm{H}, \mathrm{T}$, $t, \mathrm{~T}, \mathrm{H}$, placed in the refpective angles at the center ; they and their fums, whether fmaller or greater than the circumference, here confidered as a continued fpiral, will reprefent all the intervals in a fyftem compofed of any number of octaves, and the correfponding intervals in different octaves will be denoted by the fame arch and letters: as appears by conceiving the bafe of the third Figure coiled round into the circumference of a circle, equal to the line $C c$ or có \&c. (c)

In this notation then we have only three major $\mathrm{Hi}^{\mathrm{ds}}, C E, F A, G B$, and they all perfect; and four minor thirds, $D F, E G, A C, B D$, the firft of which being compofed of $t+\mathrm{H}$, inftead of $\mathrm{T}+\mathrm{H}$,
(c) In this notation of intervals by circular arches, that the reader may not be at a lofs for a fuitable notation of the lengths of the correfponding homogeneal ftrings; let the radius $O C$ be 1 and in $O D, O E, O F, O G, O A, O B, O C$, from the center fet off $\frac{8}{5}, \frac{4}{5}, \frac{3}{4}, \frac{2}{3}, \frac{3}{5}, \frac{8}{75}, \frac{1}{2}$ of the radius. Thefe are the fame lengths as thofe of the Monochord in Fig. 2, or Fig. 3 ; and as a regular curve drawn thro' the ends of the parallel ftrings in Fig. 3. is a Logiftic Line whofe Afymtote is the line C_{c}, fo a regular curve drawn thro' the ends of the diverging ftrings in Fig. 7. is an Equiangular Spiral whofe Pole is the center of the circle. See Sect. I. Art. Io. and Mr. Cotes's Harmonia Menfurarum, Prop. V and VI,
$\mathrm{T}+\mathrm{H}$, is too fmall by a comma; and fix fifths, $F A C, C E G, G B D, D F A, A C E, E G B$, all perfect but $D F A$, which being compofed of the defective minor third $D F$ and the perfect major III ${ }^{\mathrm{d}} F A$, is too fmall by a comma.

Thefe imperfections being caufed by the contiguity of t and H in the cycle of the elements, cannot be avoided while the hemitones are feperated; there being but 3 major tones in the cycle; and if they be joined, as in Fig. 12, the confequences will be worfe.

The reft will appear by enumerating the thirds and fifths in the $8^{\text {th }}, 9^{\text {th }}, 10^{\text {th }}, 11^{\text {th }}$, and $12^{\text {th }}$ Figures, made according to the other five arrangements in the Table of Elements (d).
8. Now if any one pleafes to try the following experiment, he will find what effect thefe imperfect fifths and fourths and their compounds with viII ${ }^{\text {ths }}$, will have upon the ear ; that of the thirds and fixths having been tried before (e).
(d) Sir Ifaac Newton happily difcovered, (Optics Book I, Part 2, Prop. 3) that the breadths of the feven primary colours in the fun's image, produced by the refraction of his rays through a prifm, are proportional to the feven differences of the lengths of the eight mufical ftrings, D, E, F, G, A, B, C, d, when the intervals of their founds are $\mathrm{T}, \mathrm{H}, \mathrm{t}, \mathrm{T}, \mathrm{t}, \mathrm{H}, \mathrm{T}$: which order is remarkably regular ; but though it agrees beft with the prifmatic colours, it is not the propereft for a fyftem of concords, as producing one major third, two minor thirds and two fifths feverally imperfect by a comma. See Fig. I3. No. 2.

[^1]In Fig. 3, tune upwards from C the two perfect $\mathrm{v}^{\text {th }} C G, G d$, and the perfect $\mathrm{xvir}^{\text {th }}$, or $2 \mathrm{vini}+\mathrm{iII}, C e^{\prime}$, then downwards the $\mathrm{v}^{\text {th }} e^{\prime} a$, and the intermediate fifth $a d$ will be too little by a comma, as including the imperfect minor third $d f$. And by tuning an eighth below a we have the imperfect fourth $A d$ too large by a comma.
9. The difagreeable effect of this fifth $d a$ and fourth $d A$ in every octave, and of their compounds with vini ${ }^{\text {ths }}$, and alfo of the third $d f$ and and fixth $f d^{\prime}$ in every octave and of their compounds with $\mathrm{v}_{11}{ }^{\text {ths }}$, and of many more fuch imperfect concords, when the ufual flat and fharp founds are added to complete the fcale, has obliged practical muficians, long ago, to diftribute that comma, wanting in the fifth da, equally among all the four $\mathrm{v}^{\mathrm{th}}, C G, G d, d a$, $a e^{e}$, contained in the xvit ${ }^{\text {th }} C e ́$. And this interval $C e ́$ may be increafed or decreafed a little before it be divided into 4 equal $v^{\text {ths }}$. In any cafe fuch diItribution is therefore called the Participation or Temperament of the fyftem, and when rightly adjufted is undoubtedly the fineft improvement in harmonics.
10. If it be afked why no more primes than 1,2,3,5 are admitted into mufical ratios; one reafon is, that confonances whofe vibrations are in ratios whofe terms involve $7,11,13, \& c$, cateris paribus would be lefs fimple and harmonious (f)
than

[^2]
Art. ir. HARMONICS.

than thofe whofe ratios involve the leffer primes only.

Another reafon is this; as perfect fifths and other intervals refulting from the number 3, make the Schifm of a comma with the perfect thirds and other intervals refulting from the number 5 , fo fuch intervals as refult from 7,11 , 13, \&c, would make other fchifms with both thofe kinds of intervals.

I I. The Greek muficians, after dividing an octave into two $4^{\text {ths }}$, with the diazeuctic or major tone in the middle between them, and admitting many primes to the compofition of mufical ratios, fubdivided the $4^{\text {th }}$ into three intervals of various magnitudes, placed in various orders, by which they diftinguifhed their Kinds of Tetrachords (g). Two of them have occurred in this Section. The firft, or $\frac{3}{4}=\frac{3}{9} \times \frac{9}{9} \times$ $\frac{243}{256}$, anfwering to the $4^{\text {th }}=\mathrm{T}+\mathrm{T}+\mathrm{L}$, in Fig. 6, is Ptolemy's Genus Diatomum ditonicum, and refults from that divifion of a Monochord which bears the name of Euclid's Section of the Canoin; the fecond Kind, or $\frac{3}{4}=\frac{8}{8} \times \frac{9}{10} \times \frac{15}{76}$, anfwering to the $4^{\text {th }}=\mathrm{T}+t+\mathrm{H}$, in Fig. 3, is Ptoleny's Diatonum intenfim.
12. Since the invention of a temperament, all thofe antient fyftems have jufly been laid afide, as being unfit for the execution of muli-
(g) Dr. Wallis has given a table of them in his Ap. pendix to Ptolemy's Harmonics. Oper. Math. vol. Hir, pag. 166.
cal compofitions in feveral parts. But to conclude from thence that the antients had no mufic in parts, would be a very weak inference. Becaufe it is much eafier for practical muficians to follow the judgment of the ear, which leads naturally to an occafional temperament of any difagreeable concords, than to learn and put in practice the theories of philofophers (b): And
(b) It may not be amifs to add the opinion of the famous Salinas. Sed unum hoc omnes fcire volo, inftrumenta quibus antiqui utebantur, confonantias habuiffe imperfectas, ut ea, quibus nunc utimur. Neque enim aliter modulatio convenienter exerceri poterat. Quod fi de hac confonantiarum imperfectione, neque Ptolemcus, neque alius ex antiquis muficis mentionem feciffe reperitur, caufam potiffiman effe crediderim, quòd ad practicos eam pertinere arbitrarentur ; quoniam fenfu duce folùm, non arte aut ratione femper fieri folita fit : cujus pleniffimum et evidentiffimum teftimonium reperitur apud Galenum, libro primo De Sanitate tuenda, capite quinto; ubi magnam effe latitudisem fanitatis oftendere volens, fic inquit:

 Xecias. hoc eft, Quid mirum, §ı Eucrafiam in fatis amplant latitudinem extendunt univerf; quando ot in lyris confonantiam ipfam qua fumma exaciiffimaque fit, wnicem atque infectabilem effe probabile fit, et qua in ufus hominum venit, certc latitulinem babeat. Sape namque, [quan] percommode tomperafle lyram videaris, alter fuperveriens muffens exactius temperavit: Foquiden nobis ad omnia vita munera \int enfus ubique judex ef. Ex quibus Galeni verbis liquido conftat, confonantias, qui-
alfo becaufe we are affured from hiftory, that experience and neceffity did introduce fomething of a temperament before the reafon of it was difcovered, and the method and meafure of it was reduced to a regular theory, as in the following propofition.

SECTIONV.

Of the temperaments of imperfect intervals and their Syncbronous variations.

PROPOSITION II.

To reduce the diatonic fyftem of perfect confonances to a tempered Syftem of Mean Tones.

Plate III. Fig. i3. When the elements are ranged in this order, T, t, H, T, t, T, H, or this, t, T, H, T, t, T, H, which two we hewed to be the beft (i), and the arches $C D$, $\mathrm{C}_{2} D E$,
bus in muficis utebantur inftrumentis, jam tunc inperfectas effe, quin potius et fuiffe femper et femper effe futuras. De Muficâ lib. ini. cap. 14. Be it fo; but did they know, that all the concords cannot be tuned perfect, and why they cannot?
(i) Sect. Iv. Art. 7.
$D E, E F, F G, G A, A B, B C$, are proportional to them, let the major $1 I^{d} C E$, fituated between the two hemitones, be bifected in d; and let the other two major tones, $F G, A B$, be diminifhed at both ends by the intervals $F f$, $G g, A a, B b$, feverally equal to half $D d$; and the octave will then be divided into five mean tones and two limmas, each limma being bigger than the hemitone by a quarter of a comma.

For the interval $D d$ being half the difference between the major and minor tones, $C D, D E$, is half a comma (k), and therefore the new tone $C d$ or $d E$ is an arithmetical mean between them. And each of the temperaments $F f, G g, A a$, $B b$, being made equal to half $D d$ or a quarter of a comma, it appears that every major tone is diminifhed by half a comma, and that every minor tone is as much increared, which reduces all the tones to an equality. And by the conftruction the limmas $b C, E f$ exceed the hemitones by a quarter of a comma apiece. Q.E.D.

Coroll. In the fyftem of mean tones every perfect $v^{\text {th }}$ is diminifhed by a quarter of a comma: as will appear by going round the $13^{\text {th }}$ figure, and comparing the tempered $\mathrm{v}^{\text {ths }}$, $f a C_{\lambda} C E g, g b d, d f a, a C E, E g b$, with the perfect ones, by means of the notes $\mathrm{T}, \mathrm{t}, \mathrm{H}$ in the angles.
(k) Scet. Ir. Art. 4.

Prop. II. HARMONICS.

This is ufually called the vulgar temperament and might be proved feveral other ways independent of the firft and fecond propofitions (l).

PRO-

(l) Salinas tells us, that when he was at Rome, he found the muficians ufed a temperament there, though they underftood not the reafon and true meafure of it, till he firft difcovered it, and Zarlino publifhed it foon after ; firft in his Dimonftrationi Harmoniche, Ragionamento quinto, propofta 1 ma, and after that, in his Inftitutioni Harmoniche, part. 2. cap. 43.

After his return into Spain, Salinas applied himfelf to the latin and greek languages, and caufed all the antient muficians to be read to him, for he was blind; and in 1577 he publifhed his learned work upon mufic of all forts; where treating of three different temperaments of a fyftem, he prefers the diminution of the v th by a quarter of a comma to the other two, which he fays are peculiar to certain inftruments. De Muficâ Lib. rir. cap. 22.

Dechales fays, that Guido Aretinus was the inventer of that temperament: Ipfe nulla habita ratione toni majoris et minoris, hunc unius quintæ defectum aliis omnibus quintis communicat, et quafi dividit, ita ut nulla deficiat nifi quarta parte commatis. Hoc fy fema, quod valde commodum eft, dicitur Arctini. Curfus Mathem. Tom. I, pag. 62. De Progreflu mathefeos et muficæ, cap. 7; et Tom. 1v. pag. 15. cap. xi. But that opinion wants confirmation, efpecially as Dechales makes no mention of the claims of Zarlino and Salizas to that invention; for it feems they had a difpute about it.

C 3

PROPOSITION III.

If the five mean tones and the two limmas, that compofe a perfect oftave, be changed into five other equal tones and treo equal limmas, of any indeterminate magnitudes; the fynchronous Variations of the limma L, the mean tone M , and of every interval compofed of any numbers of them, are all exbibited in the following table, by the numbers and Jogns of any fmall indeterminate interval v: And are the fame quantities as the variations of the temperaments of the refpective imperfect intervals.

For

2^{d} L 50	$\begin{array}{r} \mathrm{I}^{\mathrm{d}} \\ \mathrm{M} \\ -2 v \end{array}$	$\left\lvert\, \begin{gathered}3^{\text {d }} \\ L+M \\ 3 v\end{gathered}\right.$	 $1 I^{d}$ $2 M$ $-4 v$	$\left\|\begin{array}{c}4^{\text {th }} \\ L+2 \mathrm{M} \\ v\end{array}\right\|$	$\left\lvert\, \begin{array}{r}1 V^{\text {th }} \\ 3 \mathrm{M} \\ -6 v\end{array}\right.$
-50	2 V	$3 v$	$4 v$	- 0	$6 v$
$\mathrm{L}+5 \mathrm{M}$	$+4 M$	$+4 \mathrm{M}$	$2 \mathrm{~L}+3 \mathrm{M}$	$\mathrm{L}+3 \mathrm{M}$	$2 \mathrm{~L}+2 \mathrm{M}$
VII ${ }^{\text {th }}$		VIth	$6^{\text {th }}$	$V{ }^{\text {th }}$	$5^{\text {th }}$

For fince the perfect $\mathrm{vini}^{\text {th }}=2 \mathrm{~L}+{ }_{5} \mathrm{M}$ is invariable, if the variation of L be put equal to 5%, as in the table, that of 2 L is 100 , and that of 5 M , as being the complement of 2 L to the $\mathrm{vinf}^{\text {th }}$, is - IOV; whence the variation of M is -20 .

Confequently the variation of the mean $3^{\text {d }}$, $L+M$, is $5 v-2 v=3 v$, and that of the $1 I^{\mathrm{d}}$, 2 M , is -4%, and that of the mean $4^{\text {th }}, \mathrm{L}+2 \mathrm{M}$, is $5 v-4 v=v$, and that of the mean $1 \mathrm{v}^{\text {th }}, 3 \mathrm{M}$, is $-6 v$.

The variations of the intervals in the lower half of the tabie, are refpectively equal to thofe in the upper half, but have contrary figns; the correfponding intervals being complements to the perfect octave.

For which reafon the compounds of every one of thofe intervals with any number of octaves, have refpectively the fame variations both in quantity and quality.

And if the fign of the variation of any one interval be changed, the figns of all the reft will alfo be changed; becauie their quantities will vanifh all together when v or any one multiple of it vanifhes.

As to the fecond part of the propofition, it will appear in Fig. I3, that any variation v of the mean interval $C d E f$ is the fame in quantity as the variation of the temperament $F f$ of the faid interval $C d E f$: and the like is evident in any other inftance, Q.E.D.

$$
\mathrm{C}_{4} \quad \text { Coroll. }
$$

Coroll. I. It is obfervable in the tabie, that the variations of all the major mean intervals $I I^{\text {d }}, I I^{\text {d }}, I v^{\text {th }}, v^{\text {th }}, ~ V I^{\text {th }}, ~ v i I^{\text {th }}$, have the fame fign, and thoie of the minor intervals the contrary fign.

Coroll. 2. Having extended the circumference CdEfgabC of Fig. 13 into a right line, as in Fig. 14, at the points d, E, g, a, b, that terminate the major mean intervals $I^{d}, H^{d}, v^{\text {dh }}, \mathrm{vit}^{\text {th }}$, $\mathbf{v} \boldsymbol{I}^{\text {th }}$, meafured from C, (and the minor too meafured from c the other extreme of the octave $C c$) place the refpective tabular numbers $2,4,1,3,5$, denoting the proportions of their fynchronous variations; and in Fig. 15 divide any given line 06 into 6 equal parts, at the points $1,2,3,4,5$; then conceive the $14^{\text {th }}$ Fig. transferred to the $15^{\text {th }}$ five feveral times, into five parallel pofitions, fo that the feveral points 1, 2, 3, 4, 5 in each Figure may coincide. And it will be evident, by coroll. I, that any right line $O v v v v$, drawn from 0 , terminates the fynchronous variations, $1 v, 2 v, 3 v$, $4 \%, 5 \%$, of thofe mean intervals, $\mathrm{v}^{\text {th }}, \mathrm{II}^{\mathrm{d}}, \mathrm{vi}^{\mathrm{th}}$, $111^{\text {d }}$, $\mathrm{VII}^{\text {th }}$, the variations being meafured from their refpective origins $1,2,3,4,5$; and that thefe are alfo the fynchronous variations of the temperaments of the refpective imperfect intervals, and of their complements to the $\mathrm{vini}^{\text {th }}$ and compounds with vini ${ }^{\text {ths }}$, that is, of all the intervals in the fyftem.

For as to the mean $\mathrm{vv}^{\text {th }} f b$, Fig. 14, its contemporary variation in Fig. 15, will be the line
$6 v$ in the fixth parallel $F 6 B^{\prime} F^{\prime}$, when its temperament $B^{\prime} 6$ or $B^{\prime} b^{\prime}$ is taken equal to twice $B b$ and placed the fame way from its origin b^{\prime} or 6 . Becaufe in Fig. 14 the temperament of the imperfect iv th $f b$ is $F f+B b=2 B b$.

As want of room in Fig. 5 will not permit the feveral intervals $C G, C D, \& c$. even lef's than one octave, to be reprefented in their due proportions to $G I$, the quarter of the comma, which is but the 223^{d} part of an octave; we muft conceive them continued far beyond the margin of the paper.

Coroll. 3. When the $1 I^{d}$ is perfect, the temperaments belonging to the $\mathrm{v}^{\text {th }}$ and $\mathrm{vi}^{\text {th }}$ are feverally $\frac{1}{4}$ of a comma, the former in defect, the latter in excefs: and if either of them be made lefs, the other will be greater than $\frac{1}{4}$ comma.

Pl. III. \& IV. Fig. 15, 16. For when the Temperer Ovvv falls upon E, the $11^{d} C E$ is perfect, and the tempered $v^{\text {th }} C_{I}$ is lefs than the perfect $\mathrm{v}^{\text {th }} C G$ by G, and the tempered vith C_{3} is bigger than the perfect $\mathrm{vi}^{\text {th }} C A$ by $A_{3}=$ $G \mathrm{r}=\frac{1}{7}$ comma.

Hence when $A v$, any other temperament belonging to the $\mathrm{vi}^{\text {th }}$, is lefs than A_{3} or $\frac{1}{4}$ comma, Gv the correfponding temperament belonging to the $\mathrm{v}^{\text {th }}$, is greater than G I or $\frac{1}{4}$ comma : and on the contrary, when $G v$ is lefs than G_{1}, the refpective $A v$ is bigger than A_{3}. And whatever be the magnitudes of thefe temperaments of the $\mathrm{v}^{\text {th }}$ and $\mathrm{v}^{\text {th }}$, thofe of their
complements to the virith ${ }^{\text {th }}$ and compounds with vil ${ }^{\text {ths }}$ are the fame.

Coroll. 4. When the $\mathrm{vi}^{\text {th }}$ is perfect, the temperaments of the $v^{\text {th }}$ and 111^{d} are feverally $\frac{:}{5}$ comma, and are both negative.

Fig. 16. For when the temperer Ovve falls upon the line OHAI, the temperament of the $\mathrm{v}^{\text {th }}$ vanifhes, and thofe of the $\mathrm{v}^{\text {th }}$ and $11^{\text {d }}$ are $G F I$ and $E I$, and are equal. For the equal lines $G I, A_{3}$ and equal triangles $G E O, A O E$ fhew, that the line $G E$ is parallel to $A O$; whence $G H$ is equal to $E I$, and the fimilar triangles IEO, $A_{3} O$ give $I E=\frac{4}{3} A_{3}=\frac{4}{3} \times \frac{1}{4}$ comma $=\frac{2}{3}$ comma.

Coroll. 5. When the $\mathrm{v}^{\text {th }}$ is perfect, the temperaments of the $\mathrm{vi}^{\text {th }}$ and $\mathrm{HII}^{\mathrm{d}}$ are feverally equal to a comma in excefs.

For when the temperer Ovvo falls upon the line $O G K L$, the temperament of the $\mathrm{v}^{\text {th }}$ vanifhes, and thofe of the $\mathrm{v} \mathbf{1}^{\text {th }}$ and $\mathrm{II} 1^{\mathrm{d}}$ are now $A K$ and $E L$, which are equal, becaufe of the parallelograms $A E G O, A E L K$; and $E L$ is $=$ $4 \times G$ I or four quarters of a comma.

Coroll. 6. When the temperer Ovvv falls within the angle $A O E$, the tempt. $\mathrm{v}^{\text {th }}=$ tempt. $\mathrm{vi}^{\text {th }}+$ tempt. $1 \mathrm{II}^{\text {d }}$, that is, the line $G v=A v+$ $E v$, or the lines $G 1+I v=A_{3}-3 v+E v$, that is, putting the letter v for the line $I v, \frac{1}{4} c$ $+v=\frac{1}{4} c-3 v+4 v$, which is evidently true.

Coroll. 7. When the temperer Ovve falls within the angle $E O G$, the tempt. $\mathrm{vi}^{\text {th }}=$ tempt. $v^{\text {th }}+$ temp $^{t} . I 11^{d}$, that is, the line $A v=G v+$ $E v$,
$E v$, or the line $s A_{3}+3 v=G \mathrm{I}-\mathrm{Iv}+E v$, that is, putting v for the line $1 v, \frac{1}{7} c+3 v=\frac{1}{7} c-$ $v+4 v$, which is true.

Coroll. 8. When the temperer falls any where out of the angle $A O G$, the temp ${ }^{\mathrm{t}}$. $1 \mathrm{I}^{\mathrm{d}}=$ tempt. $\mathrm{v}^{\text {th }}+$ tempt. $\mathrm{vi}^{\text {th }}$, that is, when it falls beyond the fide $A O$, the tempt. $E I+I v=G H+H v$ $+A v$, or putting the letter v for the line $H v$, $\frac{1}{3} c+4 v=\frac{1}{3} c+v+3 v$, which is true: and when the temperer falls beyond the other fide $O G$, the faid tempt. $E L+L v=G v+A K+$ $K v$, that is, putting v for the line $G v, c+4 v$ $=v+c+3 v$, which is true.

Coroll. 9. The fum of the temperaments of the $\mathrm{v}^{\text {th }}$ and $\mathrm{vI}^{\text {th }}$ is $\frac{1}{2}$ a comma when the 11^{d} is perfect; is lefs than $\frac{1}{2}$ a comma by $\frac{1}{2}$ the temperament of the $111^{\text {d }}$ when flattened; and greater than $\frac{1}{2}$ a comma by $\frac{1}{2}$ the temperament of the 111 ${ }^{\text {d }}$ when fharpened.

For in the firtt cafe the faid fum is $G_{\mathrm{I}}+A_{3}$; in the fecond, it is $G_{1}+1 v+A_{3}-3 v=G_{1}+$ $A_{3}-2 v$; and in the third, it is GI-Ivt $A_{3}+3 v=G \mathrm{I}+A_{3}+2 v$; in which latter cafes the temperament of the 11^{d} is 4%.

Coroll. io. Hence the fum of the temperaments of all the concords is lefs when the $11 \mathrm{I}^{\mathrm{ds}}$ are flattened, than the like fum when the $111^{\text {ds }}$ are equally fharpened; and the fum is the leaft of all when the $111^{\text {ds }}$ are perfect, as in the fyftem of mean tones (m).
(m) Prop. ry.
Scholium.

Scholium.

From the third and tenth corollaries I think we might juftly pronounce the fyftem of mean tones to be the beft poffible, were it evident that equal temperaments caufe different concords to be equally difagreeable to the ear (n).

But if it fhall appear, that the $\mathrm{v}^{\text {th }}$ and $3^{\text {d }}$ and their compounds with octaves, are more difagreeable in their kind, than the $\mathrm{v}^{\text {th }}$ and $4^{\text {th }}$ and their compounds with octaves, all being equally tempered, as in that fyftem ; will it not follow, that the temperament of the former Parcel of concords fhould be fmaller than that of the latter, to make them all as equally harmonious as pofible, without fpoiling the harmony of the $11^{\text {d }}$ and $6^{\text {th }}$ and their compounds with octaves; which third parcel makes up the fum of all the concords in the fyftem.
(n) Mr. Huygens has pronounced it the beft, in faying that the muficians in the other planets may know perhaps, cur optimum fit temperamentum in chordarum fyftemate, cum ex diapente quarta pars commatis ubique deciditur; Cofmotheoros pag. 76 ; but has given us no reafon for his affertion, either in that incomparable book or in his Harmonic Cycle; where he only appeals to the approbation and practice of muficians and refers to the demonftrations of Zarlino and Salinas. But neither of thefe celebrated authors do any thing more, if I rightly remember, (for I have not the books now by me) than reduce the Diatonic fyftem of perfect confonances to that of mean tones, by diftributing the fchifm of a whole comma into quarters; not at all confidering, whether thofe equal temperaments have the fame, or a different effect upon the feveral concords.

Prop. III. HARMONICS. 45
For if it be the immediate fucceffion of a worfe harmony to a better, as in inftruments badly tuned, which chiefly offends the ear ; it muft be allowed, that a fyftem would be the better, cateris paribus, for having all the concords as equally harmonious in their kinds, as the nature and properties of numbers will permit.

In order to refolve thofe queftions upon philofophical principles, and to determine the temperament of a given fyftem, that fhall caufe all the concords, at a medium of one with another, to be equally, and the moft harmonious in their feveral kinds, I found it neceffary to make a thorough fearch into the abftract nature and properties of tempered confonances; and thence to derive their effects upon our organs of hearing: A large field of harmonics hitherto uncultivated.

But before I enter upon it, it will be convenient to finifh this fection with a determination of the leaft fum of any three temperaments in different parcels, when any two of them have any given ratio.

PRO.

PROPOSITION IV.

To find a Set of temperaments of the v^{th}, $\mathrm{v}^{\text {th }}$ and $1 \mathrm{I}^{\mathrm{d}}$ upon the ee conditions; that thofe of the $\mathrm{v}^{\text {th }}$ and $\mathrm{vi}^{\text {th }}$ fall bave the given ratio of r to s , and the fum of all three flall be the leaft poffible.

Pl. V.VI. Part of the $17^{\text {th }}$ and $18^{\text {th }}$ Figures being conftructed like the $15^{\text {th }}$, from A towards K take $A M: G \mathrm{I}:: s: r$, and through the interfection p of the lines $A G, M_{\mathrm{I}}$, draw the temperer Orst; I fay $G r, A s, E t$ are the temperaments required.

For by the fimilar triangles $G r p, A s p$, and Gip, $A M p$, we have $G r: A s::(G p: A p:$: GI:AM::) $r: s$ by conftruction, as required by the firt condition.

Again, in the fame line $M A C$ take $A N=$ $A M$, and through the interfection P of the lines $A G, N$ i produced, draw another temperer $O R S T$; and by the fimilar triangles $G R P$, $A S P$, and G i $P, A N P$, we have $G R: A S:$: ($G P: A P:: G \mathrm{I}: A N$ or $A M::$) $r: s$ by conftruction, which likewife anfwers the firft condition ; and it is eafy to underftand, that no other temperers but thofe two can anfwer that condition.

Prop. IV. HARMONICS.
Now whatever be the quantity and quality of the given ratio r to s, I fay the fum $\mathrm{Gr}+\mathrm{A}_{\mathrm{s}}+$ $E t$ is lefs than $G R+A S+E T$.

Cafe 1. Fig. 17. For when r is bigger than s, or the ratio of r to s, or of G I or A_{3} to $A M$ or $A N$, is a ratio of majority, the temperers $O p, O P$ fall within the angles $A O E, A O C$ refpectively; as appears by the conftruction. Whence, by coroll. 6 and 8. prop. IIf, $\mathrm{Gr}=$ $A s+E t$, and $E T=G R+A S$; and therefore $G r+A s+E t: G R+A S+E T:: G r: E T$, which is a ratio of minority, becaufe $G r$ is lefs than $G H$ or $E I(0)$ and $E I$ lefs than $E T$.

Cafe 2. Fig. 18. When r is lefs than s, or the ratio of r to s, or of G i to $A M$ or $A N$ is a ratio of minority, the temperers $O p, O P$ fall within the angles $E O G, A O C$ refpectively; as appears by the conftruction. Whence, by coroll. 7 and 8. prop. inr, $A s=G r+E t$, and $E T$ $=G R+A S$, and therefore $G r+A S+E t: G R$ $+A S+E \mathcal{T}:: A s: E \mathcal{T}$, which is a ratio of minority; becaufe $G r: A s:: r: s:: G R: A S$, whence, as $G r$ is lefs than $G R$, fo $A s$ is lefs than $A S$, which is lefs than $I T$, which is lefs than $E T$.

Cafe 3. Fig. 17 and 18 . When r to s, or G I to $A M$ or $A N$, is the ratio of equality, the temperer Orst coincides with the line OE, and Orst is parallel to $G A$; whence it is plain, that the fum of the temperaments $G i+A_{3}+0$, is lefs than $G R+A S+E T$, as required. Q.E.D.

Coroll.
(0) See coroll. 4. Prop. irr.

Coroll. Putting c for the comma $E L$ or four G_{I}, when the tempt. v:tempt. vi:: $r: s$, the required temperaments of the v, vi and III are, $\boldsymbol{G} r=\frac{r}{3^{r+s}} c, A s=\frac{s}{3^{r+s}} c$ and $\pm E t=\frac{r-s}{3^{r+s}} c$. And according as r is bigger or lefs than s, the temperer Orst falls within the angle $A O E$ or EOG.

Fig. 17 and 18 . For, As: $G r:: s: r$, and As: ${ }_{3} G r$ or $s K:: s: 3 r$, and $A s: A s+s K$ or $c(p):: s: s+3 r$. Whence $A s=\frac{s}{3^{r+s}} c$, and $G r=\frac{r}{s} A s=\frac{r}{3 r+s} c$, and in the angle $A O E, E t=G r-A s=\frac{r-s}{3 r+s} c$, but in $E O G$, $E t=A s-G r$, by the equations in cafe I, 2.

PROPOSITION V.

To fund a Set of temperaments of the $\mathrm{v}^{\text {th }}$, $\mathrm{vi}^{\text {th }}$ and III upon the \int e conditions; that thofe of the $\mathrm{v}^{\text {th }}$ and $1 \mathrm{II}^{\mathrm{d}}$ foall bave the given ratio of r to t , and the fum of all three foall be the leaft polible.

Pl. VII. Vill. Fig. ig, 20. If t to r be a ratio of minority, or of equality, or even of majority lefs than I to $\frac{1+\sqrt{33}}{8}$ or $0.843070 \& \mathrm{cc}$, from E towards I take $E M: G 1:: t: r$, and through
(p) See Dem. coroll. 5. prop. int.
through the interfection p of the lines $M_{\mathrm{I}}, G E$ produced, draw the temperer Orst, and the required temperaments will be $G r, A s, E t$.

But if the ratio of t to r be greater than I to $0.843070 \& \mathrm{cc}$, in Fig. 20, from E towards L take $E N: G$ I :: $t: r$, and through the interfection P of the lines N I, GE , draw the temperer $O R S T$, and the required temperaments will be $G R, A S, E T$.

And if $t: r:: \mathrm{I}: 0.843070 \mathrm{\delta c}$, the required temperaments will be $G r, A s, E t$, or $G R$, $A S, E T$, their fums being equal.

In the firft care, Fig. 19, taike $E N=E M$, and in the fecond, Fig. $20, E M=E N$; and through the interfections P, p of the lines N_{I}, $M \mathrm{I}$ with $G E$, draw two more temperers $O R S T$, Orst.

Then by the fimilar triangles $G r p, E t p$ and $G \perp p, E M p$, we have $G r: E t::(G p: E p$ $:: G I: E M::) r: t$ by conftruction, as required by the firt condition.

Again, by the fimilar triangles $G R P, E T P$ and $G I P, E N P$, we have $G R: E \mathcal{T}::(G P$ $: E P:: G \mathrm{I}: E N::) r: t$ by conftuction, which alfo anfwers the firf condition; and it is eafy to underfand that no other temperers but thofe can anfwer that condition.

Cafe 1. Fig. 19. Now when t is to r, and therefore $E M$ or $E N$ to G I in a ratio of minority, the temperers $O p, O P$ fall within the angles $A O E, E O G$ refpectively by the conD ftruction.
ftruction. Whence, by coroll. 6 and 7. prop. 3, $G r=A s+E t$ and $A S=G R+E T$.

But $G r: E t:: r: t$, and $G r: \frac{{ }^{\frac{1}{f}}}{} E t$ or $r \mathbf{I}$ $:: r: \frac{1}{7} t$, and $G r: G r-r$ I or $\frac{1}{4} c:: r: r-$ $\frac{1}{4} t:: 4 r: 4 r-t$. Whence $G r=\frac{r}{4 r-t} c$, and $E t=\frac{t}{r} G r=\frac{t}{4 r-t} c$, and $A s=G r-E t=$ $\frac{r-t}{4 r-t} c$, by the equation in the laft paragraph.

Likewife $G r: E T:: r: t$, and $G R: \frac{1}{4} E T$ or RI: $: r: \frac{1}{4} t$, and $G R: G R+R$ I or $\ddagger c:: r$ $: r+\frac{1}{4} t:: 4 r: 4 r+t$. Whence $G R=\frac{r}{4^{r+t}} c$, and $E t=\frac{t}{r} G R=\frac{t}{4 \cdot+t} c$, and $A S=G R+$ $E T=\frac{r+t}{4^{+t} t} c$, by the equation above.

Therefore $G r+A s+E t: G R+A S+E \mathcal{T}::$ $G r: A S:: \frac{r}{4 r-t}: \frac{r+t}{4 r+t}:: 4 r r+r t: 4 r r+$ $r t,+2 r t-t t$, which is a ratio of minority; becaufe t being lefs than $r, t t$ is lefs than $2 r t$.

Cafe 2. Fig. 20. When t to r, and therefore $E M$ or $E N$ to $G \mathrm{I}$, is a ratio of majority, the temperers $O p t, O P T$ fall within the angles, $A O C, E O G$ refpectively; as appears by the conftruction. Whence, by coroll. 8 and 7 prop. 3, $E t=G r+A s$ and $A S=G R+E T$.

In which cafe the theorems for the values of $G r, A s, E t, G R, A S, E T$ are the fame as before.

Therefore $G r+A s+E t: G R+A S+E T::$ $E t: A S:: \frac{t}{4 r-t}: \frac{r+t}{4 r+t}:: 4 r t+i t:(4 r r+$ 4 rt

Prop. V. HARMONICS.
$4 r t-r t-t t$ or) $4 r t+t,+4 r r-r t-2 t t$, which is a ratio of minority, except either when $4 \mathrm{rr-rt-2t}=0$, or $\frac{4^{r r-r t-2 t t}}{4^{t t}}=0$, or $\frac{r r}{t t}-$ $\frac{r}{4 t}-\frac{1}{2}=0$, which gives $\frac{r}{t}=\frac{1+\sqrt{ } 33}{8}=0.843070$ \&c (q); or when $4 r r-r t-2 t t$, or $\frac{r r}{t t}-\frac{r}{4 t}-$ $\frac{\square}{2}$ is negative, and confequently $\frac{r}{t}$ is lefs than $0.843070 \& \mathrm{cc}(r)$, or the ratio of t to r is greater than I to 0.843070 \& c .

In the firtt cafe either $G r+A s+E t$ or $G R+$ $A S+E T$, as being equal, are the required temperaments; in the fecond the latter only, as being lefs than the former.

Cafe 3. When $t=r$, we have $E M$ or $E N=$ $G_{\text {r }}$; therefore the interfection p is removed to an infinite diftance, and the temperer Orst coincides
(q) For fuppofing $\frac{r}{t}=\frac{x}{1}=x$, we have $\frac{r r}{t t}-\frac{r}{4 t}-$ - $\frac{1}{2}=x x-\frac{1}{7} x-\frac{1}{2}=0$. Whence $x x-\frac{1}{7} x=\frac{1}{2}$ and $x x-\frac{1}{7} x+$ $\frac{1}{8} \times \frac{1}{8}=\frac{1}{8} \times \frac{1}{8}+\frac{1}{2}=\frac{1}{8} \times \frac{1}{8}+\frac{32}{8 \times 8}=\frac{33}{8 \times 8}$ whofe fquare roots are $x-\frac{1}{8}=\frac{\neq \sqrt{ } 33}{8}$; whence x or $\frac{r}{t}=\frac{1 \pm \sqrt{ } 33}{8}=$ $\frac{135.7445628 \mathrm{cc} .}{8}$
(r) For fince the root $0.843070 \mathrm{8c}$, when fublituted for x, will make the value of $x x-\frac{1}{4} x-\frac{1}{2}$, or of $x-\frac{1}{4}-$ $\frac{1}{2 x}=0$; a fmaller number fubflituted for x, will produce a negative value of the latter, and confequently of the former quantity.

$$
D_{2}
$$ comes $=G H+O+E I$, and is to $G R+A S+E T$ $:: 5: 6$, a ratio of minority, produced by putting $t=r$ in the terms of that ratio in cafe I or 2 . Q.E. D.

Coroll. When the tempt. v : tempt. ini : : r : t, if $\frac{r}{t}$ be bigger than $0.843070 \& \mathrm{cc}$, the required temperaments of the v, vi and in are, $G r=\frac{r}{4--t} c, A s=\frac{r-t}{4 r-t} c, E t=\frac{t}{4 r-t} c$. And the temperer $O r$ st falls within the angle $A O E$ or $A O C$, according as r is bigger or lefs than t.

But if $\frac{r}{t}$ be lefs than $0.843070 \& \mathrm{c}$, they are $G R=\frac{r}{4 r+t} c, A S=\frac{r+t}{4 r+t} c, E T=\frac{-t}{4 r+t}$; and the temperer $O R S T$ falls within the angle EOG.

And if ${ }_{t}^{r}=0.843070 \& \mathrm{c}$, their fums are equal and either of them anfwers the problem.

PROPOSITIONVI.

To find a Set of temperaments of the $\mathrm{v}^{\text {th }}$, $\mathrm{VI}^{\mathrm{th}}$ and $\mathrm{III}^{\mathrm{d}}$ upon the ee conditions that thofe of the $\mathrm{VI}^{\text {th }}$ and $11 \mathrm{I}^{\mathrm{d}}$ fball bave the given ratio of s to t, and the fum of all three fall be the leafor polible.

Pl. IX. X. Fig. 21 and 22. From E towards C take $E M: A_{3}:: t: s$ and through the interfection p of the lines $M_{3}, A E$ draw the temperer Orst, and the required temperaments will be $G r, A s, E t$.

For by the fimilar triangles $A s p, E t p$ and $A_{3} p, E M p$, we have $A s: E t::(A p: E p$ $\left.:: A_{3}: E M::\right) s: t$ by confruction, as required by the firf condition.

Again, taking $E N=E M$, through the interfection P of the lines $N_{3}, A E$ produced, draw the temperer $O R S \mathcal{T}$, and by the fimilar triangles $A S P, E T P$ and $A_{3} P, E N P$, we have $A S: E T::\left(A P: E P:: A_{3}: E N\right.$ or $E M):: s: t$ by conftruction, which alfo anfivers the firft condition; and it is plain that thofe are all the temperers which can anfwer it.

Now whatever be the ratio of s to t, I fay that $G r+A s+E t$ is lefs than $G R+A S+E T$.

$$
\mathrm{D}_{3} \quad \mathrm{Caf}
$$

Cafe 1. Fig. 21. When t is to s, or $E M$ to A_{3} in a ratio of minority, the temperers $O p$, $O P$ fall within the angles $A O E, E O G$ refpectively, as appears by the conftruction. Whence by coroll. 6 and 7 prop. III, $G r=A s$ $+E t$ and $A S=G R+E \mathcal{T}$.

But $E t: A s:: t: s$, and $E t: \frac{4}{3} A s$ or $I t$ $:: t: \frac{4}{3} s$ and $E t: E t+I t$ or $\frac{1}{3} c(s):: t: t+$ $\frac{4}{3} s:: 3 t: 3 t+4 s$. Whence $E T=\frac{t}{4 s+3 t} c$. And $A s=E t \times \frac{s}{t}=\frac{s}{4 s+3^{t}} c$. And Gr=As+ $E t=\frac{s+t}{4 s+3 t} c$, by the equation in the laft paragraph.

Again, $E \mathcal{T}: A S:: t: s$ and $E \mathcal{T}:{ }_{5}^{4} A S$ or $I \mathcal{T}:: t: \frac{4}{3} s$ and $E \mathcal{T}: I \mathcal{T}-E \mathcal{T}$, or $I E$ or ${ }_{7}^{7} c:: t: \frac{4}{3} s-t:: 3 t: 4 \mathrm{~s}-3 t$. Whence $E \mathcal{T}=\frac{t}{4 s-3 t} c$ and $A S=E \mathcal{T} \times \frac{s}{t}=\frac{s}{4-3 t} c$.

Therefore $G r+A s+E t: G R+A S+E T$ $:: G r: A S:: \frac{s+t}{4 s+3 t}: \frac{4-3 t^{t}}{s}:: 4 s s+4 s t-3 s t$ - $3 t t$, or $4 s s+3$ st- $2 s t-3 t t: 4 s s+3 s t$, which is evidently a ratio of minority.

Cafe 2. Fig. 22. When t is to s, or $E M$ to A_{3} in a ratio of majority, the temperers O_{p}, $O P$ fall within the angles $A O E, G O c$ refpectively. Whence, by coroll. 6 and 8 prop. III, $G r=A s+E t$ and $E T=G R+A S$, and $G r+A s+E t: G R+A S+E T:: G r: E T$, which is plainly a ratio of minority.
(s) See Dem. coroll. 4. prop. in.

Cafe 3. When $t=s$ or $E M$ or $E N=A_{3}$, the interfection P vanifhes, and the temperer $O R S T$ coincides with $O G K L$, as appears by the conftruction. Whence by the conclufion of the fecond cafe, $G r+A s+E t: o+A K+$ $E L:: G r: E L$, a ratio of minority, as before. Q.E.D.

Coroll. When the tempt. vi: tempt. III: : $s: t$, the required temperaments of the v, vi and III are, $G r=\frac{s+t}{4 s+3 t} c, A s=\frac{s}{4 s+3 t} c, E t=\frac{t}{4 s+3 t} c$; and the temperer lies within the angle $A O E$, whatever be the quantity and quality of the ratio of s to t.

Scholium.

Thefe three problems comprehend the folution of a more general one, namely, To find the temperament of a fyftem of founds upon thefe conditions; that the octaves be perfect, that the ratio of the temperaments of any two given concords in different parcels be given, and that the fum of the temperaments of all the concords, be the leaft poffible.

The reafon is, that the given ratio of the temperaments of any two concords, determinics the pofition of the temperer of the fyftem, and this the three magnitudes of the temperaments of all the concords, whatever be their number. But if both the given concords be contained in any one of the three parcels above menD 4 tioned,

SECTION VI.

Of the Periods, Beats and Harmony of imperfect confonances.

DEFINITIONS.

I. Any two founds whofe fingle vibrations have any fmall given ratio, are called Imperfect Unifons:
II. And the cycle of their pulfes is called Simple or Complex, according as the difference of the leaft terms of that ratio is an unit or units:
III. And when a complex cycle is divided into as many equal parts as that difference contains units, each part is called a Period of the pulfes:
IV. And the cycles of perfect confonances are often called Short cycles, to diftinguifh them from the long cycles of imperfect unifons.

[^3]
PROPOSITION VII.

In going from either end to the middle of any fimple cycle or period of the pulfes of imperfect unifons, the Alternate Leffer Intervals between the fuccelfive pulfes increafe uniformly, and are proportional to their diftances from that end; and at any diftances from it lefs than balf the fimple cycle or period, are lefs than balf the leffer of the two vibrations of the imperfect unifons.

Let the vibrations be V and v, and $\mathrm{V}: v:$: $R: r$, the integers R, r being the leaft in that ratio ; and putting $d=R-r$, we have the complex cycle $r V=R v=r v+d v(u)$, and the period $\frac{r}{d} \mathrm{~V}=\frac{r}{d} v+v$, which when $d=\mathrm{I}$, is a fimple cycle (x).

Pl. XI. Fig. 23, 24, 25, 26. To affift the imagination, let the fucceffive vibrations V, V, V, $\& \mathrm{c}$, be reprefented by the equal lines $A B, B C$, $C D, \& c$, and the middle inftants of their pulfes
(u) Seč. III. Art. 12.
(x) Def. II.
pulfes (y) by the points $A, B, C, \& c$; and the fucceffive vibrations $v, v, v, \& c$. by the equal lines $a b, b c, c d, \& c$, and the middle inftants of their pulfes by the points $a, b, c, \& x c$.

Then beginning from two coincident pulfes at A or a, it is obfervable, that the fucceffive intervals of the pulfes are alternately bigger and lefs; and that the Alternate Leffer Intervals $B b$, $C c, D d, \& c$, or $\mathrm{V}-v, 2 \mathrm{~V}-2 v, 3 \mathrm{~V}-3 v$, $\& c$, increafe uniformly, by the repeated addition of the firft leffer interval V-v, at every equal increment V or v of their diftances from A. The alternate leffer intervals are therefore proportional to their diftances from the coincident pulfes A, a.

Now any affigned diftance $3 \mathrm{~V}: r \mathrm{~V}:: 3 v$: $r v:: 3 \mathrm{~V}-3 v: r \mathrm{~V}-r v=d v$, by the equation; whence $3 \mathrm{~V}: \frac{r}{d} \mathrm{~V}:: 3 \mathrm{~V}-3 v: v$; confequently if the affigned diffance 3 V or $A D$ be lefs than half the fimple cycle or period $\frac{r}{d} \mathrm{~V}$, the adjoining interval $3 \mathrm{~V}-3 v$, or $D d$ is lefs than half v; but if bigger, bigger than half v.

And the argument is the fame in going backwards from the two next coincident pulfes at U and w, U and $x, \& \mathrm{c}$, their larger and leffer alternate intervals being evidently of the fame magnitudes as in going forwards.

Fig. 24. Now if the difference $d=2$, and the length of the complex cycle be the line $A U$ or $a x=r V=r v+2 v$, having divided it into two equal

[^4]equal parts $A X, X U$, we have the part or period $A X=\frac{r}{2} \mathrm{~V}$; which becaufe 2 does not meafure $r(z)$, confifts of a multiple of V , as $A K$, and a remainder $K X=\frac{1}{2} \mathrm{~V}=\frac{1}{2} K L$.

We have alfo, by the fame equation, $A X=$ $\frac{r}{2} v+v$, which becaufe 2 does not meafure r, confifts of a multiple of v (one more than that other of V) as $A l$, and a like remainder $l X=$ $\frac{1}{2} v=\frac{1}{2} l m$.

Now the diftances of the fucceffive pulfes of V from the point X are $X L, X M, X N, \& c$, or $\frac{1}{2} V, \frac{3}{2} V, \frac{5}{2} V, \& x c$, and thofe of the fucceffive pulfes of v are $X m, X n, X 0, \& c$, or $\frac{1}{2} v, \frac{3}{2} v$, $\frac{5}{5} v, \& c$, and the differences of thofe refpective diftances, or the alternate leffier intervals between the fucceffive pulfes of V and v, are $L m, M n$, No, \&cc, or $\frac{1}{2} V-\frac{1}{2} v, \frac{3}{2} V-\frac{3}{2} v, \frac{5}{2} V-\frac{5}{2} v, \& c c ;$ which increafe uniformly by the repeated addition of $V-v$ or $\frac{2}{2 V-2 v}$ to the firft and fucceeding intervals.

Affign any diftances $X L, X N$, or $\frac{1}{2} V$ and $\frac{5}{2} V$; then $\frac{1}{2} V: \frac{5}{2} V:: \frac{1}{2} v: \frac{5}{2} v:: \frac{1}{2} V-\frac{1}{2} V: \frac{5}{2} V-$ $\frac{5}{2} v$, that is, $X L: X N:: X m: X o:: L m:$ No, or the alternate leffer intervals are proportional to their diftances from the periodical point X.

Now

(z) For if 2 meafured r, it would alfo meafure $R=$ $r+2$, and fo the terms R, r of the ratio V to v would not be the leaft, as they are fuppofed to be

Now any affigned diftance $\frac{5}{2} \mathrm{~V}: \frac{r}{2} \mathrm{~V}:: \frac{5}{2} v: \frac{r}{2}$ $v:: \frac{5}{2} V-\frac{5}{2} v: \frac{r}{2} V-\frac{r}{2} v=v$, by the given equation, that is, $\frac{s}{2} V: \frac{r}{2} \mathrm{~V}:: \frac{5}{2} \mathrm{~V}-\frac{5}{2} v: v$; confequently if the affigned diftance $\frac{s}{T} \mathrm{~V}$ or $X N$, be lefs than half the period $\frac{r}{2} \mathrm{~V}$ or half $X U$, the adjoining interval $\frac{s}{2} V-\frac{s}{2} v$ or $N o$, is lefs than half v; but if bigger, bigger than half v.

And in going backwards from X, the alternate leffer intervals $K l, I k, H i, \& c$, are refpectively equal to $L m, M n, N_{0}, \& c c$, at equal diftances on each fide of X.

Fig. 25. In like manner if $d=3$, or $r \mathrm{~V}=r v$ ' $+3 v$, having divided this cycle $A U$ or ay into three equal periods $A X, X \Upsilon, r U$, that equation gives $A X=\frac{r}{3} \mathrm{~V}$, which confifts of a multiple of V , as $A G$, and a remainder $G X$ $=\frac{1}{3} V$ (or $\frac{2}{3} V$ hereafter to be confidered) $=\frac{\pi}{3}$ $G H$, whofe complement $X H=\frac{2}{3} V$.

The fame period $A X$ is alfo $=\frac{r}{3} v+v$ by the fame equation, and therefore confifts of a multiple of v (one more than that other of V) as $h b$, and a like remainder $b X=\frac{1}{3} v=\frac{1}{5} b i$, whofe complement $X i=\frac{2}{7} v$.

Hence the diftances from X of the fucceffive pulfes of V are $X H, X I, X K, \& c$, or ${ }_{\frac{2}{3}}^{\frac{2}{3}} \mathrm{~V}, \frac{5}{3} \mathrm{~V}, \frac{8}{3} \mathrm{~V}, \& \mathrm{c}$, and thofe of the fucceffive pulfes of v are $X i, X k, X l, \& c$, or $\frac{2}{3} v, \frac{5}{5} v$, $\frac{8}{8} v, \& \%$. and their differences, or the alternate
leffer
leffer intervals between the fucceffive pulfes of V and v, are $H i, I k, K l$, $\& c c$, or $\frac{2}{3} V-\frac{3}{5} v, \frac{5}{3} \mathrm{~V}-\frac{5}{5} v$, $\frac{8}{3} \mathrm{~V}-\frac{8}{3} \mathrm{v}, \& \mathrm{c}$; which increafe uniformly by the repeated addition of $V-v$ or $\frac{3 V-3 v}{3}$ to the firft and fucceeding intervals.

Affign any diftances $X H$ and $X K$, or $\frac{2}{3} V$ and $\frac{8}{3} \mathrm{~V}$; then ${ }_{\frac{2}{5}} \mathrm{~V}: \frac{8}{3} \mathrm{~V}:: \frac{2}{5} v: \frac{8}{8} v,:: \frac{2}{3} \mathrm{~V}-\frac{2}{3} v:$ ${ }_{\frac{8}{5}}^{\frac{8}{5}}-{ }_{\frac{8}{5}}^{8} v$, that is, $X H: X K:: X i: X l:: H i$ $: K l$, or the alternate leffer intervals are proportional to their diftances from the periodical point X.

Now any affigned diftance $\frac{8}{3} \mathrm{~V}: \frac{r}{3} \mathrm{~V}:: \frac{8}{3} \mathrm{v}$: $\frac{r}{3} v:: \frac{8}{3} V-\frac{8}{3} v: \frac{r}{3} V-\frac{r}{3} v=v$ by the equation, that is, $\frac{8}{5} \mathrm{~V}: \frac{r}{3} \mathrm{~V}:={ }_{5}^{8} \mathrm{~V}-\frac{8}{3} v: v$; fo that if the affigned diftance $\frac{8}{3} V$ or $X K$ be lefs than half the period $\frac{r}{3} V$ or half $X \Upsilon$, the adjoining interval $\frac{8}{3} \mathrm{~V}-\frac{8}{3} v$ or $K l$ is lefs than half v; but if bigger, bigger than half v.

By doubling the period $A X=A G+\frac{1}{3} V$, we have $A Y=2 A G+\frac{2}{3} V=A N+\frac{2}{3} V$, fo that $N Y$ is $=\frac{2}{3} \mathrm{~V}$ and its complement $\mathrm{YO}=\frac{1}{3} \mathrm{~V}$. Again by doubling $A X=A b+\frac{1}{5} v$, we have $A Y=$ $2 A b+\frac{2}{3} v=A p+\frac{2}{3} v$, fo that $p r=\frac{2}{3} v$ and its complement $\chi_{q} q=\frac{1}{3} v$.

Hence the alternate leffer intervals of the pulfes of V and v, in going oppofite ways to equal diftances from X and from r, are equal. And in going contrary ways from X towards A, and from γ towards U, the alternate leffer intervals
intervals are $\frac{1}{3} \mathrm{~V}-\frac{1}{3} v, \frac{4}{3} \mathrm{~V}-v_{\frac{4}{3}}^{\frac{4}{3}}, \frac{7}{3} \mathrm{~V}-\frac{7}{3} v, \& \mathrm{c}$, which increafe uniformly as before; and $\frac{7}{3} \mathrm{~V}$ being an affigned diftance from X or r, we have $\frac{7}{3} \mathrm{~V}: \frac{r}{3} \mathrm{~V}:: \frac{7}{3} v: \frac{r}{3} v:: \frac{7}{3} \mathrm{~V}-\frac{7}{3} v: \frac{r}{3} \mathrm{~V}-\frac{r}{3}$ $v=v$ as before. So that if the affigned diftance $\frac{7}{3} \mathrm{~V}$ be lefs than half the period $\frac{r}{3} \mathrm{~V}$, the adjoining interval $\frac{7}{3} V-\frac{7}{3} v$ is lefs than half v; but if bigger, bigger than half v.

Fig. 26. Laftly when the period $A X=\frac{r}{3} \mathrm{~V}$, confifts of a multiple of V as $A G$ and a remainder $G X=\frac{2}{3} V$, which remained to be confidered, its complement $X H$ is $=\frac{1}{3} \mathrm{~V}$, and the demonftration would proceed in the fame method as before.

Whoever defires a general proof of the propofition for any value of the difference d, need only read the laft example over again with a defign to make the proof general ; and he will perceive that what has been faid of the number 3 as a value of d, mutatis mutandis, is plainly applicable to any other value. Q.E.D.

Coroll. I. Any fimple cycle or period of the pulfes of imperfect unifons contains one more of the quicker than of the flower vibrations, as appears by its equation, $\frac{r}{d} \mathrm{~V}=\frac{r}{d} v+v$; and the periodical points $X, \Upsilon, \&<c$, always fall within thofe values of v that are feverally contained within as many correfponding values of V, and the number of thofe points in each complex cycle is $d-1$.

Coroll. 2. The leffer intervals that lie neareft to the periodical points and the points of coincidence, are lefs than any of the reft and are $\frac{\mathrm{V}-v}{d}$ and all its multiples, whereof the greateft multiplier is d; as $\frac{\mathrm{V}-v}{3}, \frac{2 \mathrm{~V}-2 v}{3}, \frac{3 \mathrm{~V}-3 v}{3}$, when $d=3 ; \frac{\mathrm{V}-v}{4}, \frac{2 \mathrm{~V}-2 v}{4}, \frac{3 \mathrm{~V}-3 v}{4}, \frac{4 \mathrm{~V}-4 v}{4}$, when $d=4 ; \& c$.

Coroll. 3. Some of the alternate leffer intervals of the pulfes of imperfect unifons, are the differences of equal numbers of their vibrations, counted from the neareft coincident pulfes; and others are the differences of equal numbers of the fame part or parts of their fingle vibrations, counted from the neareft periodical point.

Coroll. 4. If the vibrations of two couples of imperfect unifons, or of any two confonances, be proportional, the periods and cycles of their pulfes, whether fimple or complex, will be in the ratio of the homologous vibrations.

Let T and t be the vibrations of one couple, and V and v thofe of the other; and fince T : $t:: V: v:: r+d: r$, the cycles of their pulfes are $r \mathrm{~T}=\overline{r+d} \times t$ and $r \mathrm{~V}=\overline{r+d} \times v$, and the periods are $\frac{r}{d} \mathrm{~T}=\frac{r+d}{d} t$ and $\frac{r}{d} \mathrm{~V}=\frac{r+d}{d} v$; and are in the ratio of T to V, or of t to v.

Coroll. 5. The length of the period of the Leaft Imperfections in any confonance of imperfect unifons, is the fame as that of the period of its pulfes.

Pl. XI.

Pl. XI. Fig. 23, 24, 25, 26. For unifons are perfect when their fucceffive pulfes are conftantly coincident (a), and imperfect when the ratio of their vibrations is a little altered from the ratio of equality (b); and then the pulfes are gradually feparated by Alternated Leffer Intervals, which are the Imperfections of this confonance; and fince they increafe in going from the beginning to the middle of every fimple cycle, or period of the pulfes, and thence decreafe to the end of it (c), the length of the period of the Leaft Imperfections of imperfect unifons is plainly the fame as that of the period of their pulfes.

PROPOSITION VIII.

If either of the vibrations of imperfect unifons and any multiple of the other, or any different multiples of both, whole ratio is irreducible, be conf $\sqrt{2}-$ dered as the fingle vibrations of an imperfect confonance, the length of the period of its leaft imperfections, will be the fame as that of the pulfes of the imperfect unifons.

PI. XI. Fig. 23, 27. For inftance, if $A B$ and $a b$ be the vibrations of imperfect unifons, $2 A B$
(a) Sect. 1. Art. 3.
(b) Sect. vi. Defin. I.
(c) Prop. Vin.

Prop. ViII. HARMONICS.

$2 A B$ or $A C$ and $a b$ will be the vibrations of imperfect octaves, whofe treble is one of the unifons, and whofe bafe is derived from the other by intermitting every other pulfe of the feries, $A, B, C, D, E, \& c$.

Now if thefe octaves were perfect, every pulfe of the bafe would coincide with every other pulfe of the treble; but here they are gradually feparated by fome of the alternate leffer intervals $C c, E e, \& \in c$, of the imperfect unifons. The intermediate pulfes of the treble, which in perfect octaves would bifect the intervals of the pulfes of the bafe, are alfo gradually feparated from the round points which bifect them, by the reft of the alternate leffer intervals of the faid unifons. And thus the imperfections of the tempered octaves, or the Diflocations of the pulfes in their fucceffive fhort cycles (d), are every where the fame as the imperfections of the unifons, and confequently have the fame periods.

The argument is the fame if $2 a b$ or $a c$ and $A B$ be the vibrations of imperfect octaves, as in Fig. 28; and alfo if any other multiple of $A B$ or $a b$, as $m A B$ or $m a b$, be one of the vibrations of the imperfect confonance; as appears by fuppofing $\mathrm{m}-\mathrm{I}$ pulfes of $A B$ or $a b$ to be fo intermitted as to leave only fingle equidiftant pulfes in Fig. 23, 24, $25,26$.

Pl. XII. Fig. 34. Now let any different multiples of $A B$ and $a b$, as $3 A B$ and $2 a b$, or E $\quad A D$
(i) Defin. iv. Sect, vi.
$A D$ and $a c$ be the vibrations of the imperfect confonance; and if $A B$ were $=a b$, then would $3 A B$ or $A D$ be to $2 a b$ or $a c:: 3: 2$, and all the flort cycles of the vibrations, $A D, a c$ would be perfect, or their exterior pulfes G and g, N and n, \&ec, would be coincident, as in Fig. 33: becaufe $2 \times 3 A B$ or $2 A D$ or $A D$ $+D G$ would then $=3 \times 2 a b$ or $3 a c$ or $a c+c e$ teg.

But $A B$ in Fig. 34 being bigger than $a b$, the multiple $6 A B$ or $A G$ is alfo bigger than the equimultiple $6 a b$ or $a g$; and fo the Exterior pulfes G and g, N and $n, \& c$, of the fhort cycles, which pulfes were coincident before, are now feparated by fome of the alternate leffer intervals, $G g, N n$, \&cc, of the pulfes of $A B$ and $a b(e)$: the diftances of the pulfes G and g, N and $n, \& x c$, from A and a, being equimultiples of $A B$ and $a b$.

For the like reafon the Interior pulfes, c, c, Exc, of the imperfect fhort cycles are alfo feparated from the pulies of $A B$ and $a b$ (denoted by round points when different from thofe of $A D$ and $a c$) by tome of their alternate leffer intervals.

Hence the diflocations of the pulfes in all the imperfect fhort cycles, are fome of the alternate leffer intervals of the pulfes of $A b$ and $a b$.

For though we began the fift fhort cycle from two coincident pulfes A, a, yet the argument is the fame if we fuppofe them feparated by

[^5]by any one of the alternate leffer intervals; or begin to count the vibrations of the confonance from any two pulfes of $A B$ and $a b$, as Q and r, whofe diftances from the next periodical point or coincident pulfes Z, n, are proportional to the vibrations $A B, a b$, that is, whofe interval $\mathrm{Q} r$ is an alternate leffer interval of their pulfes (f).

For fince the feveral lengths $\mathrm{Q} X$ and $r y$, $X \Delta$ and $y \varepsilon, \Delta K$ and $\varepsilon \lambda$, scc, of the fubfequent fhort cycles, are proportional to $A B$ and $a b$, the remaining diftances $X Z$ and $y, \Delta Z$ and $\varepsilon n, K Z$ and $\lambda n, \& c$, are alfo proportional to $A B$ and $a b$; which fhews that the diflocations of the exterior pulfes X and y, Δ and ε, K and $\lambda, \& \in c$, and of the interior too, are conftantly fome of the alternate leffer intervals of the pulfes of $A B$ and $a b$. And thus the period of the leaft diflocations of the pulfes of the imperfect confonance, or of the leaft imperfections in its fhort cycles, is contantly the fame as that of the pulfes of $A B$ and $a b$.

Fig. 35 fhews the fame thing, when $2 A B$ and $3 a b$, or $A C$ and $a d$, are different multiples of $A B$ and $a b$, whofe pulfes make long fimple cycles; and when they make periods, the like is evident by infpection of the pulfes about the periodical points X, Υ, in Fig. 24, 25, 26, fuppofing the proper numbers of pulfes to be intermitted.

And univerfally, the leaft terms of any perfect ratio being m and n, the periods of imE 2 perfect
(f) Prop. vir.
perfect unifons whofe vibrations are $A B$ and $a b$, will be changed into periods of the fame length of an imperfect tharp confonance whofe vibrations are $m A B$ and $n A b$ by intermitting m-I pulfes of $A B$ and $n-1$ pulfes of $a b$; or into equal periods of an imperfect flat confonance whofe vibrations are mab and $n A B$, by intermitting m-I pulfes of $a b$ and $n-1$ pulfes of $A B$, fo as to leave equidiftant pulfes at larger intervals for the pulfes of the refulting confonance.

For tho' fome of the alternate leffer intervals of the pulfes of the imperfect unifons are deftroyed by thoie intermiffions, yet the remaining pulfes continue in their own places and make periods of the fame length as the whole number of pulfes did before. Q.E.D.

Coroll. I. With refpect to the perfect confonance whofe vibrations are $m A B$, and $n A B$, the former imperfect confonance of $m A B$ and $n a b$ is tempered fharp by the tempering ratio $n A B$ to $n a b(g)$, and the latter imperfect confonance of $m a b$ and $n A B$ is tempered flat by the fame ratio $m A B$ to $m a b$ of the vibrations $A B, a b$ of the imperfect unifons, whofe interval is therefore the temperament of both thofe imperfect confonances.

And the fame might be faid with refpect to this other perfect confonance of the vibrations mab and $n a b$, whofe interval is the fame as that of the former perfect confonance, the perfect ratio being the fame in both.

Coroll.
(g) Sect. 11. Art 5 and 6.

Coroll. 2. The lengths of the perfect cycles of thofe perfect confonances are $m n A B$ and mnab; (becaufe $m A B: n A B:: m: n:: m a b: n a b ;$) and $m n A B$ being the greater of the two, is therefore the whole length of the imperfect fhort cycle of either of the foregoing tempered confonances.

Coroll. 3. Confequently the imperfect fhort cycle of any imperfect confonance contains equal numbers of the flower and quicker vibrations $A B, a b$ of the imperfect unifons from whence it is derived.

Coroll. 4. The fame multiples of the vibrations of imperfect unifons, will be the vibrations of other imperfect unifons, whofe period is the fame multiple of the period of the given unifons (b), and whofe interval is the fame too at a different pitch; becaufe the ratio of the vibrations is the fame (i).

L E M M A.

Pl. XII. Fig. 36. The logaritbms of mall ratios, a o to bo, co to do, whofe terms bave a common balf fum, so, are very nearly proportional to the differences of the terms of each ratio.

For by the fuppofition the point s bifects both $a b$ and $c d$, the differences of thofe terms. And if any hyperbola defcribed with the center 0 and E 3 rectangulai

[^6]rectangular afymptotes $s o, o q$, cuts the perpendiculars erected at s, a, b, c, d, in t, e, f, r, b, it is well known that the areas $a b f e, c d b g$, arithmetically expreffed, are hyperbolic logarithms of the ratios $a 0$ to $b 0$, co to $d 0$; and that thefe logarithms are proportional to any other logarithms of the fame ratios. And thofe areas $a b f e, c d b g$, differ very little from the trapeziums ablk, cdnm, cut off by the tangent ptq at the point t in the middlemoft perpendicular $t s$: becaufe the common bafes $a b, c d$, or differences of the terms $a 0$ and $b o$, co and $d o$, are fuppofed to be very fmall in comparifon to the terms themfelves.

It appears then that the logarithm of the ratio $a 0$ to $b 0$ is to the logarithm of co to $d o$, as the area $a b f e$ to the area $c d b g$, or very nearly as the trapezium ablk to the trapezium cdmm ; or (becaufe $s t$ is the mean altitude of both) as the rectangle under $a b$ and $s t$ to the rectangle under $c d$ and $s t$, or as $a b$ to $c d$. Q. E. D.

Coroll. I. The logarithms of fmall ratios, ao to $b 0, a 0$ to $c 0$, which have a common term $a 0$, are alfo very nearly proportional to the differences of their terms; but not fo nearly as if the terms had a common half fum.

For the logarithms of the ratios ao to $b 0$, ao to co are proportional to the areas abfe, acge, or very nearly to the trapeziums $a b l k, a c m k$, or to the rectangles under their bafes $a b, a c$ and their mean altitudes, or nearly to the bafes themfelves: becaufe the ratio of the mean altitudes is very finall in comparion to that of the bafes.

Coroll.

Coroll. 2. P1. XII. Fig. 37. The logarithms of any fimall ratios $a 0: b 0, c o:$ do are very nearly in the ratio of $\frac{a b}{a b}$ to $\frac{c d}{c o}$, or of $\frac{a b}{b_{0}}$ to $\frac{c d}{d_{0}}$, compounded of the direct ratio of the differences of the terms of the propofed ratios, and the inverfe ratio of their homologous terms.

For fuppofing $a 0: c o:: c o: d o$, thefe ratios have the fame logarithm. Whence the logarithms of the propofed ratios, $a 0: b 0, c o: d o$, or $a 0: e o$, are as $a b$ to $a e$ by cor. I , or as $\frac{a b}{a 0}$ to $\frac{a e}{a 0}$ or $\frac{c d}{c}$, becaufe $a e: c o:: c d: c o$ by the fuppofition. The fecond part may be proved in like manner by taking $f 0: a 0:$: co : do.

Coroll. 3 . If a and b be the terms of any fmall ratio whofe \log arithm is c and $\frac{q}{p} c$ be any part or parts of it ; taking $s=\frac{a+b}{2}$ and $d=\frac{a-b}{2}$, $s+\frac{q}{p} d$ to $s-\frac{q}{p} d$ is the ratio whofe logarithm is $\frac{q}{p} c$ very nearly.

For the terms of both thofe ratics have a common half fum s, and fince $s+d=a$ and $s-d=b$, the difference of the terms a and b is $2 d$, and that of the terms $s+\frac{q}{p} d$ and $s-\frac{q}{p} d$ is $\frac{2 q}{p} d$. Whence by the lemma, the logarithm of a to b is to the logarithm of $s+\frac{q}{p} d$ to $s-\frac{q}{p} a$ $:: 2 d: \frac{2 q}{p} d:: 1: \frac{q}{p}:: c: \frac{q}{p} c$, and c being the $\log n-$

E 4
rithen
rithm of a to $b, \frac{q}{p} c$ is the logarithm of $s+\frac{q}{p} d$ to $s-\frac{q}{p} d$.

Coroll. 4. Hence as mufical intervals are proportional to the logarithms of the ratios of the fingle vibrations of the terminating founds (k), if any part or parts of a comma c denoted by $\frac{q}{p} c$, be the interval of imperfect unifons, the ratio of the times of their fingle vibrations will be 16 I $p+q$ to 16 . $p-q$.

For the comma c being the interval of two founds whofe fingle vibrations are as 8 I to 80 (l), by fubftituting 8 I for a and 80 for b in the laft corollary, we have $s=\frac{161}{2}, d=\frac{1}{2}$ and $s+\frac{q}{p} d$ to $s-\frac{q}{p} d:: \frac{16 \mathrm{I}}{2}+\frac{q}{p} \times \frac{1}{2}: \frac{16}{2}-\frac{q}{p} \times \frac{1}{2}:: 16 \mathrm{I} p+q$ $: 161 p-q$, the ratio of the fingle vibrations belonging to the interval $\frac{q}{p} c$, very nearly (m).

This
(k) Sect. I. Art. in.
(l) Sect. II. Art. 4.
(m) And converfely, if the ratio of the times of the fingle vibrations of imperfect unifons be V to v, their interval is $V \bar{V}+v \times 161 c$. For fuppofing $V: v:: 161 p+q: 161 p-q$, p and q being indeterminate numbers; or $V=16 \mathrm{I} p+q$ and $v=161 p-q$; then $V-v=2 q$ and $V+v=161 \times 2 p$, and $\frac{V-v}{V+v}=\frac{q}{161 p}$. Whence $\frac{V-v}{V+v} \times 161 c=q$ c, the interval belonging to the ratio $16 \mathrm{r} p+q: 16 \mathrm{r} p-q$, or $V: v$, by coroll. 4.

Prop. VIII. HARMONICS.

This ratio approaches furprifingly near to the truth, as will appear by an example. Let $\frac{q}{p} c=\frac{1}{4} c$, or $p=4$ and $q=1$, then ${ }_{1} 6 \mathrm{I} p+q$: 16 $p-q::$ as $645: 643$. Now by the Tables of Logarithms,

$$
\begin{aligned}
& \text { The log. } \frac{81}{80}=0.00539 .50319 \\
& \text { yof it }=0.00134 .87580 \\
& \text { the log. } \frac{6+5}{643}=0.00134 .87417 \\
& \text { the difference }=0.00000 .00163
\end{aligned}
$$

and the logarithm 539.50319 divided by the difference 163 gives the quotient 330984 , which fhews that $\frac{1}{4} c$ deduced from the ratio $645: 643$ differs from the truth but by $\frac{1}{33098_{4}}$ part of a comma; a degree of exactnefs abundantly fufficient for every purpofe in harmonics.

Coroll. 5. The times of the fingle vibrations of imperfect unifons being V and v and their interval $\frac{q}{p} c ; \mathrm{V}: v:: 16 \mathrm{I} p+q: 16 \mathrm{I} p-q$ and the period of their pulfes is $\frac{161 p-q}{2 q} \mathrm{~V}$ or $\frac{x 61 p+q}{2 q} v(n)$.

Likewife the Vibrations of other imperfect unifons being V^{\prime} and v^{\prime} and their interval $\frac{q^{\prime}}{p} c$; $V^{\prime}: v^{\prime}:: 161 p+q^{\prime}: 161 p-q^{\prime}$ and the period of their pulles is $\frac{161 p-q^{\prime}}{2 q^{\prime}} V^{\prime}$ or $\frac{161 p+q^{\prime}}{2 q^{\prime}} v^{\prime}$.

Coroll.
(n) See Scet. vi. Defin. iIt,

Coroll. 6. Hence if the intervals of two confonances of imperfect unifons be equal, or $q=q^{\prime}$, the periods of their pulfes have the ratio of their flower or quicker vibrations, V to V^{\prime}, or v to v, which ratios are therefore the fame (0).

Coroll. 7 . The Ultimate Ratio of the periods of imperfect unifons is compounded of the ratio of their flower or quicker vibrations directly and of that of their intervals inverfely, and fo it is $\frac{\mathrm{V}}{q}$ to $\frac{\mathrm{V}^{\prime}}{q^{\prime}}$, or $\frac{v}{q}$ to $\frac{v^{\prime}}{q^{\prime}}$.

For fuppofing the quantities p, v, v^{\prime} in coroll. 5 to be variable and p to increare to infinity in any finite time, the intervals $\frac{q}{p} c, \frac{?^{\prime}}{p} c$, will decreafe and vanifh in the ratio of q to q^{\prime} firlt given; the ratio $161 p-q$ to $161 p-q^{\prime}$ will alfo decreafe and vanim in the ratio of equality; and therefore the Ulimate Ratio with which the increafing periods $\frac{161 p-q}{2 q} \mathrm{~V}$ and $\frac{161 p-q^{\prime}}{2 q^{\prime}} V^{\prime}$ became infinite at the end of the given time, and vanifhed into innumerable thort cycles of perfect unifons, is $\frac{V}{q}$ to $\frac{\mathrm{V}^{\prime}}{q^{\prime}}$, or, by a like argument, $\frac{v}{q}$ to $\frac{v^{\prime}}{q^{\prime}}$.

Coroll. 8. Hence if two confonances of imperfect unifons have a common found or vibration $V=V^{\prime}$, or $\vartheta=v^{\prime}$, the ultimate ratio of their periods is q to q, the inverfe ratio of their intervals:
(0) This agrees with Cor A. Prop. pro

Prop. IX. HARMONICS. 75
intervals; and confequently is the inverfe ratio of the differences of their vibrations (p).

Carol. 9. If the two flower or the two quicker vibrations of two confonances of impperfect unions have the ratio of their intervals, the periods of their pulfes are ultimately equal. For if $\mathrm{V}: \mathrm{V}^{\prime}:: q: q^{\prime}$, then $\frac{\mathrm{V}}{q}: \frac{\mathrm{V}^{\prime}}{q^{\prime}}:: \mathrm{I}: \mathrm{I}$, which is the ultimately ratio of the periods: and the like argument is applicable to the ratio $v: v^{\prime}$.

PROPOSITION IX.

If the interval of two founds whole perfeet ratio is m to n , be increafed or diminifled by ${ }_{\mathrm{p}}^{9} \mathrm{c}$, and the times of the complete vibrations of the bale and treble of either of the e consonances be Z and Z and the period of its leafs imperfections be P , then in
Cad. $\mathrm{I}, \mathrm{P}=\frac{161 \mathrm{p}-\mathrm{q}}{2 \mathrm{q}} \times \frac{\mathrm{Z}}{\mathrm{m}}$ or $\frac{16 \mathrm{p} \mathrm{p}+\mathrm{q}}{2 \mathrm{q}} \times \frac{z}{\mathrm{n}}$,
Cal. $2, \mathrm{P}=\frac{161_{1}+\frac{q}{q}}{2 q} \times \frac{Z}{m}$ or $\frac{161 \mathrm{p}-\mathrm{q}}{2 q} \times \frac{Z}{\mathrm{n}}$.
Pl. XII. Fig. 38. For if AV and av, of V and v be the times of the complete vibrations of imperfect unions whole interval is the temperament $\frac{q}{p} c$, then $V: 0:: 161 p+q: 161 p-q(q)$ and the period of their pules, or of their lat imper-
(p) Cool. i. and Set. I. Art. II,
(9) Coral. 4. Lemma.
imperfections, is $\frac{161 p-q}{2 q} \mathrm{~V}=\frac{161 p+q}{2 q} v(r)$ and has the fame length as the period of the leaft imperfections in a fharp confonance whofe vibrations are $m \mathrm{~V}$ and $n v$, or in a flat confonance whofe vibrations are $n v$ and $n \mathrm{~V}$; both confonances being derived from the perfect one whofe vibrations are $m \mathrm{~V}$ and $n \mathrm{~V}$, or $m v$ and nv (s).

Hence in Caf. I. taking $\mathrm{Z}=m \mathrm{~V}$ and $z=n v$, we have $\frac{Z}{m}=V$ and $\frac{z}{n}=v$; which values being fubftituted for V and v in the period of imperfect unifons, give $\mathrm{P}=\frac{161 p-q}{2 q} \times \frac{Z}{m}=\frac{161 p+q}{2 q} \times \frac{z}{n}$. And in Caf. 2. (Z and z being fuppofed indeterminate) taking $Z=m v$ and $z=n \mathrm{~V}$, we have $\frac{Z}{m}=v$ and $\frac{z}{n}=V$; which being fubftituted for v and V in the faid period of imperfect unifons, give $\mathrm{P}=\frac{161 p+q}{2 q} \times \frac{2}{n}=\frac{166_{1} p-q}{2 q} \times \frac{z}{n}$. C.E.D.

The value of P in Cafe 2 is deducible from its value in Cafe 1 , only by changing the fign of q; that is, by fuppofing $\frac{q}{p} c$ to be the negative or flat temperament, as it really is when $+\frac{q}{p} c$ is the fharp one. And thus one expreffion of the value of P might have ferved both cafes of the propofition, but two are more diftinct for future ufe.

Coroll.
(1) Sect. vi. Defin. ini. or Cor, 5: Lemma.
(s) Prof. viri. Corol. 1 .

Coroll. I. Hence if any two imperfect confonances have Z and Z for the times of the complete vibrations of their bafes, z and z^{\prime} for thofe of their trebles, $\frac{q}{p} c$ and $\frac{q^{\prime}}{p} c$ for their temperaments, whether fharp or flat, or one of each fort, m and m^{\prime} for the major, and n and n^{\prime} for the minor terms of the perfect ratios; the Ultimate ratio of their periods is $\frac{Z}{q^{m}}$ to $\frac{Z^{\prime}}{q^{\prime} m^{\prime}}$, or $\frac{z}{q^{n}}$ to $\frac{z^{\prime}}{q^{\prime \prime}}$: The proof of which is the fame as was given for the Ultimate ratio of the periods of imperfect unifons in Coroll. 7. to the Lemma.

Coroll. 2. Hence when the temperaments are equal and the major terms the fame, the periods of the leaft imperfections have ultimately the ratio of the fingle vibrations of the bafes.

Coroll. 3. When the bafes are the fame, the periods have ultimately the inverfe ratio of the temperaments and major terms jointly.

Coroll. 4. When the bafes and major terms are the fame, the periods have ultimately the inverfe ratio of the temperaments.

Coroll. 5. When the bafes and temperaments are the fame, the periods have ultimately the inverfe ratio of the major terms.

Coroll. 6. All thofe corollaries are applicable to the trebles and the minor terms, only by reading trebles inftead of bafes and minor terms inftead of major; and then, as before they had no dependence on the trebles and minor terms,
fo now they have none upon the bafes and major terms.

PHÆNOMENA OF BEATS.

If a confonance of two founds be uniform, without any beats or undulations, the times of the fingle vibrations, of its founds bave a perfect ratio; but if it beats or undulates, the ratio of the vibrations differs a little from a perfect ratio, more or lefs according as the beats are quicker or flower.

Change the firft and fmalleft ftring of a violoncello for another about as thick as the fecond, that their founds having nearly the fame ftrength may beat frronger and plainer. Then fkrew up the firf ftring; and while it approaches gradually to an unifon with the fecond, the two founds will be heard to beat very quick at firft, then gradually flower and flower, till at laf they make an uniform confonance without any beats or undulations. At this juncture either of the ftrings ftruck alone, by the bow or finger, will excite large and regular vibrations in the other, plainly vifible to the eye; which fhews that the times of their fingle vibrations are equal (t).

Alter the tenfion of either ftring a very little, and their founds will beat again. But now the motion

[^7]motion of one ftring ftruck alone makes the other only ftart, but excites no regular vibrations; a plain proof that they are not ifochronous. And while the founds of both are drawing out with an even bow, not only an audible but a vifible beating and irregularity is obfervable in the vibrations, which in the former cafe were free and uniform.

Meafure the length of either ftring between the nut and bridge, and, when they are perfect unifons, at the diftance of $\frac{:}{5}$ of that length from the nut mark that fring with a fpeck of ink. Then placing the edge of your nail on the fpeck, or very near it, and preffing it to the finger-board, upon founding the remaining $\frac{2}{3}$ with the other ftring open, you will hear an uniform confonance of $V^{\text {ths }}$, whofe fingle vibrations have the perfect ratio of 3 to 2 (u.) But upon moving your nail a little downwards or upwards, that ratio will be a little increafed or diminifhed; and in both cafes the imperfect $V^{\text {ths }}$ will beat quicker or flower according as that perfect ratio is more or lefs altered.

The Phænomena are the fame when the parts of the ftring have any other perfect ratio ; except that the beats of the fimpler concords are plainer than thofe of the lefs fimple and thefe plainer than thofe of the difcords, which being very quick are not eafily diftinguifhed from the uniform roughnefs of petfect difcords.

The
(u) Sect. I. Mrt. 7.

The founds of an organ being generally more uniform than any other, their beats are accordingly more diftinct, and are perfectly ifochronous when the blaft of the bellows is fo uniform as not to alter the vibrations of either found.

Beats and undulations when every thing elfe is filent, are alfo pretty plain upon the harpfichord, efpecially while the founds are vanifhing.

Quicker undulations are beats, and are remarkably difagreeable in a concert of ftrong, treble voices, when fome of them are out of tune; or in a ring of bells ill tuned, the hearer being near the fteeple; or in a full organ badly tuned: nor can the beft tuning wholly prevent that difagreeable battering of the ears with a conftant rattling noife of beats, quite different from all mufical founds, and deftructive of them, and chiefly caufed by the compound ftops called the Cornet and Sefquialter, and by all other loud ftops of a high pitch, when mixed with the reft. But if we be content with compofitions of unifons and octaves to the Diapafon, whatever be the quality of their founds, the beft manner of tuning will render the noife of their beats inoffenfive if not imperceptible. Thefe are the general phœenomena of beats, whofe theory I am going to explain.

PROPOSITION X.

An imperfect confonance makes a beat in the middle of every period of its leaft imperfections, and fo the time between its fucceffive beats is equal to the periodical time of its leaft imperfections.

Pl. xi. Fig. 23 to 27. 34, 35. Any fimple cycle or any period of the pulfes of imperfect unifons, contains one more of the quicker than of the flower vibrations (x), and the fhort cycle of any imperfect confonance contains equal numbers of the quicker and flower vibrations of the imperfect unifons (y). Confequently after taking away the greateft equal numbers of fhort cycles, that can be taiken from both ends of the fimple cycle or the period of the imperfect unifons, fome part of another fhort cycle or two, as confifting of unequal numbers of the quicker and flower vibrations of the imperfect unifons, will always remain in the middle of the cycle or period. And this part, by interrupting the fucceffion of the thort cycles, wherein the harmony of the confonance confifts, interrupts its harmony and caufes the noife which is called a beat: efpecially as the interruption is made where the fhort cycles on each
(x) Prop. vir. coroll. I.
(y) Prop. virr. coroll. 3 .
fide of it are the moft imperfect and inharmonious. Therefore the time between the fucceffive beats, made in the middle of each period or fimple cycle of the pulfes of the imperfect unifons, or of the leaft imperfections of the confonance (z), is equal to the time of this period.

And the caufe of the beats of imperfect unifons is a like interruption of the fucceffion of their hhort cycles, in the middle of every period or fimple cycle of their pulfes, where they are moft imperfect and inharmonious. Q.E.D.

Coroll. The time between the fucceffive beats of an imperfect confonance is the fame as the periodical time of its Greateft Imperfections.

PROPOSITION XI.

If the interval of two founds whofe perfect ratio is m to n , be increafed or diminifhed by the temperament $\frac{9}{\mathrm{p}} \mathrm{c}(\mathrm{a})$, and β be the number of beats made by either of tho e confonances while its bafe is making N , and its treble M complete vibrations; then in

$$
\begin{aligned}
& \operatorname{Caf} . \mathrm{I}, \beta=\frac{2 \mathrm{q}}{16 \mathrm{p}-\mathrm{q}} \mathrm{mN} \text {, or } \frac{2 \mathrm{q}}{161 \mathrm{p}+\mathrm{q}} \mathrm{nM}, \\
& \operatorname{Caf} .2, \beta=\frac{2 \mathrm{q}}{16 \mathrm{q} \mathrm{p}+\mathrm{q}} \mathrm{mN}, \text { or } \frac{2 \mathrm{q}}{161 \mathrm{p}-\mathrm{q}} \mathrm{nM} .
\end{aligned}
$$

For if the time between the fuccefive beats of either confonance be called P , and the time
(z) Prop. viri.
(a) Sce Lemma cor. 4. p. 72.

Prop. XI. H A R M O N I C S.
of a complete vibration of its bafe be Z and that of its treble z; the time of their beating and vibrating will be conftantly meafured by $\beta P=N Z$ or $M z$. Hence $\beta=\frac{N Z}{P}$ or $\frac{M Z}{P}$ and fince the time P is equal to the period of the leaft imperfections of the confonance (b), by fubftituting its values in Prop. IX, we have in Cai. r. $\beta=N Z \times \frac{2 q m}{161 p-q . Z}=\frac{2 q m \mathrm{~N}}{161 p-q}$, and fo of the other values of β. Q.E.D.

Coroll. I. Hence if any two imperfect confonances have Z and Z^{\prime} for the times of the fingle vibrations of their bafes, z and z^{\prime} for thofe of their trebles, $\frac{q}{p} c$ and $\frac{q}{p} c$ for their temperaments, whether flat or harp, or one of each fort, m and n^{\prime} for the major, n and n^{\prime} for the minor terms of the perfect ratios, N and N^{\prime} for the numbers of complete vibrations made by the bafes, and M and M^{\prime} ' for thofe made by the trebles in any given time; the ultimate ratio of the numbers of their beats, made in that time, will be $q m \mathrm{~N}: q^{\prime} m^{\prime} \mathrm{N}^{\prime}$, or $q n \mathrm{M}: q^{\prime} n^{\prime} \mathrm{M}^{\prime}$, or $\frac{q m}{Z}: \frac{q n n^{\prime}}{Z}$, or $\frac{q n}{z}: \frac{q n}{z^{\prime}}$.

The manner of proving the two firf ratios has been fhewn before (c), and the given time being conftantly $\mathrm{N} Z=\mathrm{N}^{\prime} \mathrm{Z}^{\prime}=\mathrm{Mz}=\mathrm{M}^{\prime} z^{\prime}$, we have $N: N^{\prime}:: \frac{1}{\mathrm{Z}}: \frac{1}{\mathrm{Z}^{\prime}}$, which ratios compounded with $q m: q^{\prime} m^{\prime}$ give $q m \mathrm{~N}: q^{\prime} m^{\prime} \mathrm{N}^{\prime}:: \frac{q m}{Z}: \frac{q^{\prime} m^{\prime}}{Z^{\prime}}$. F 2 Like-
(b) Prop. x.
(c) Lemma cor. 7 .

Likewife $\mathrm{M}: \mathrm{M}^{\prime}:: \frac{1}{z}: \frac{1}{z^{\prime}}$ which ratios compounded with $q n: q^{\prime} n^{\prime}$ give $q n \mathrm{M}: q^{\prime} n^{\prime} \mathrm{M}^{\prime}:$: $\frac{q n}{z}: \frac{q^{\prime} n^{\prime}}{z^{\prime}}:$

Coroll. 2. Hence, when the temperaments are equal and the major terms the fame, the beats of the confonances, made in a given time, have ultimately the inverfe ratio of the fingle vibrations of the bafes.

Coroll. 3. When the bafes are the fame, the beats have ultimately the ratio of the temperaments and major terms jointly: And therefore when the bafes and beats are the fame, the temperaments have ultimately the inverfe ratio of the major terms.

Coroll. 4. When the bafes and major terms are the fame, the beats have ultimately the ratio of the temperaments.

Coroll. 5. When the bafes and temperaments are the fame, the beats have ultimately the ratio of the major terms.

Coroll. 6. All thefe corollaries are applicable to the trebles and minor terms, by reading trebles inftead of bafes and minor terms inftead of major: and then they have no dependence on the bafes and major terms, as in the former cafes they had none upon the trebles and minor terms: which abfent terms may therefore in both cafes have any magnitudes whatever without altering the ratio of the beats.

Prop. XI. HARMONICS.

Coroll. 7. Things remaining as in the propofition, we have in

Caf. I. Z:z::m+ $\frac{\beta}{N}: n:: m: n-\frac{B}{N}$.
Caf. 2. $\mathrm{Z}: z:: m-\frac{B}{N}: n:: m: n+\frac{B}{N}$.
For by the Prop. in Caf. I. $\beta=\frac{2 q m \mathrm{~N}}{161 p-q}$, whence ${ }_{N}^{\beta}: n:: 2 q:$ 161 $_{\mathrm{N}} p-q$ and compofite $m+\frac{3}{\mathrm{~N}}$ $: m:: 16 \mathrm{r} p+q: 16 \mathrm{I} p-q$, either of which ratios being the tempering ratio and m to n the perfect one, the imperfect ratio is plainly $m+\frac{\beta}{N}: n:: Z: \%$. And a like refolution of the other values of β in the propofition gives the other proportions.

Scbolium I.

To bew that the ultimate ratio of the beats or the periods of imperfect confonances, when ufed inftead of the exalt ratio, can produce no fenfible difference in the Harmony.
I. The temperaments of any two confonances being $\frac{q}{p} c$ and $\frac{q}{p} c$, the difference between the exact and the ultimate ratio of their beats, made in any given time, is the ratio $161 p \mp q$ to 16 I $p \mp q^{\prime}$; where the fign of q or q^{\prime} is negative if the refpective temperament be harp, or affirmative if flat.

For that ratio compounded with the exact ratio of the beats, which is $\frac{q n \mathrm{~N}}{161 \%=q}$ to $\frac{q^{\prime} m^{\prime} \mathrm{N}^{\prime}}{161 q-q^{\prime}}(d)$, makes their ultimate ratio $q m \mathrm{~N}$ to $q^{\prime} m^{\prime} \mathrm{N}^{\prime}(e)$.
2. Now the magnitude of the ratio $161 p \mp q$ to $161 p \mp q^{\prime}$, like that of all ratios, being greatert or leaft according as the difference of its terms is greateft or leaft in proportion to the terms themfelves; it will follow; that in the moft harmonious fyftem of founds hereafter determined (f), the ultimate ratio of the beats of any two concords cannot differ from their exact ratio by any ratio greater than $362 \frac{5}{8}$ to $36 I_{\frac{5}{8}}^{5}$, or lefs than 2901 to 2900 .

For the temperaments $\frac{q}{p} c, \frac{q^{\prime}}{p} c$ of any two concords in that fyftem, have no other values than a couple of thefe, $\frac{5}{18} c, \frac{3}{T_{8}} c$, and $\frac{2}{T_{5}^{3}} c(f)$. Where p being 18 , the greateft magnitude of the faid ratio $16 \mathrm{I} p \mp q$ to $16 \mathrm{I} p \mp q^{\prime}$ is $161 \times 18+3$ to $161 \times 18-5$, or $362 \frac{5}{8}$ to $361 \frac{5}{8}$, and the leaft magnitude of it is $161 \times 18+3$ to $161 \times 18+2$, or 2901 to 2900 .
3. Hence the number of beats in either term of any ultimate ratio in that fyftem, cannot differ from the number of them in the correfponding term of the exact ratio, by above $\frac{1}{56}$ part of that firf number : and therefore not
(d) Prop. xi.
(e) Prop. xi. cor. i.
(f) Prop. xvi. Schol. 2. Art. 10 and 13.
by a fingle beat when that number is lefs than 361.

For let a to e be an ultimate ratio which exceeds the correfponding exact ratio by the greateft difference $362 \frac{5}{3}$ to $361 \frac{5}{8}$. Then by fubstracting this difference, and neglecting the fractions, the exact ratio is $361 a$ to $362 e$, that is, a to $e+\frac{1}{3 \in T} e$, or $a-\frac{1}{\sigma^{\frac{1}{2}} a} a$ to e.
4. Now let two $\mathrm{v}^{\text {ths }}$, or any two concords of the fame name, near the middle of the fcale of a good organ, have the fame bafe and different trebles; and fuppofe them fo nicely tempered, that in a given time one of the $\mathrm{v}^{\text {ths }}$ fhall make 362 beats and the other 36 r . This indeed is extremely difficult to execute, the numbers of beats being fo large. But fuppofing it done, my opinion is (from my own experience in fmaller numbers) that the moft critical ear could not diftinguifh the leaft difference in the harmony of thofe $v^{\text {ths }}$, or in the rate of their beating: no not if the ratio of the beats were much greater than 362 to 361 : And if it could not, without doubt the theory of ultimate ratios is fufficiently accurate for determining and adjufting the Harmony of the beft fyftem of founds. Becaufe it will be fhewn hereafter, that the beft method of tuning any fyfrem, is to adjuft every $v^{\text {th }}$ to the number of beats it fhould make in that fytem.
5. In lefs harmonious fyftems, the difference between the exact and the ultimate ratio is fome-

$$
\mathrm{F}_{4} \quad \text { thing }
$$

thing greater than 362 to 361 ; as $322 \frac{1}{2}$ to $32 \frac{1}{2} \frac{1}{2}$ in the fyttem of mean tones (g); but ftill not fo great in any tolerable fyftem as to affect the moft critical ear: and what has been proved of beats holds true of Periods, the ratio of the periods being the inverfe ratio of the numbers of beats made in any given time.
6. Therefore the ultimate ratios of beats and periods ought to be ufed in harmonics, their terms being always fimpler than thofe of the exact ratios, as appears by comparing Prop. Ix and XI with their corollaries.

For inftance in the fyftem of equal harmony, the temperament of the $\mathrm{v}^{\text {th }}$ is $\frac{-5}{18} \mathrm{c}$, and of the $\mathrm{vi}^{\text {th }}$ is $\frac{+3}{18} c$, whence if their bafes be the fame the exact ratio of their beats, made in any given time, is $361 \frac{7}{8}$ to $362 \frac{7}{8}$ by Prop. xi; but their ultimate ratio is that of equality by coroll. 3 , which is fimpler, and the harmony of the concords not fenfibly different (b).

Scholium 2.

To fiew that the theory of beats agrees witb experiments.

1. Pl. I. Fig. 3. The exponent of the time of a fingle vibration of any given found, as c, in
(g) Prop. 2. coroll.
(b) Art. 4. of thefe.
in a given fyftem of perfect confonances may be changed into I by dividing every exponent by that of the given found, which changes them to thofe in Pl. xiI. Tab. I. without altering their proportions.

Then if the found whofe exponent is I , be a little altered to γ either higher or lower, the numbers of beats made in any given time by the feveral imperfect confonances of γ with every one of the other founds, will be proportional to the Denominators of their exponents.

For when γ is flatter than c, all the intervals above c are increafed by the common temperament $c y=\frac{q}{p} c$ in Prop. xI, where in Cafe I the number of beats made by any given confonance γd, while its bafe γ is making N vibrations, is $\frac{2 q}{161 p-q} m \mathrm{~N}$. And all the perfect intervals below c being diminifhed by $c \gamma$, in Cafe 2 the number of beats of any given confonance γB, while its treble γ is making M vibrations, is $\frac{2 q}{161 p-q} n$ M.

Here the numbers N, M of the vibrations of 2 made in any given time are equal, and $\frac{2 q}{161 p-q}$ being the fame in both cafes, the beats of γd are to thofe of γ_{2} B as m to n, that is as the major term 9 of the perfect ratio 9 to 8 belonging
to $2 d$, is to the minor term 15 of the perfect ratio 15 to 16 belonging to γB; and thofe terms are the Denominators of the exponents of d and B, the treble of the former and the bafe of the latter confonance.

And fince the beats of γd and $\gamma \mathrm{B}$ are as 9 to 15, and by the fame demonftration thofe of 2 B and $\gamma \mathrm{e}$ as 15 to 5 , ex equo the beats of γd and γe, having the fame bafe, are as 9 to 5 ; which terms are the Denominators of the exponents of the trebles d, e.

And by the like proportions the beats of ${ }_{2} \mathrm{~B}, 2 \mathrm{~A}$, which have the fame treble, are as 15 to 5 , the Denominators of the exponents of the bafes B, A.

And when γ is fharper than c, the two theorems above are changed to thefe $\frac{2 q}{161 p q} m \mathrm{~N}$ and $\frac{2 q}{161 p+q} n \mathrm{M}$, and the demonitration goes on as before. C.E. D.
2. In Tab. 2 and 3 each feries of fractions, being a geometrical progreffion in the ratio 2 to I , are the exponents of the fingle vibrations of fucceffive vini ${ }^{\text {ths }}$, and are feverally deduced from the exponents of the bafes of as many given concords AC, AD, AF, AC汹, AE, AF波.

Hence in Tab. 2. the beats which the treble of any imperfect Minor confonance, AC, AD or AF, makes in a given time with its bafe and with every $8^{\text {th }}$ below it and as many 8 ths above

Prop. XI. HARMONIC S.

 9^{1}it as refult from a continual bifection of the Numerator of its exponent, are all ifochronous. But the beats which that treble makes with the fucceffive 8 ths ftill higher are continually doubled in any given time.

T A B. 2.					
$\frac{12}{5}$	$\frac{6}{5}$	1	$\frac{3}{5}$	$\frac{3}{10}$	$\frac{3}{20}$
$\mathrm{~A}^{\prime}$	A	C	a	a^{\prime}	$a^{\prime \prime}$
$\frac{8}{3}$	$\frac{4}{3}$	I	$\frac{2}{3}$	$\frac{1}{3}$	$\frac{1}{6}$
$\mathrm{~A}^{\prime}$	A	D	a	a^{\prime}	$a^{\prime \prime}$
$\frac{16}{5}$	$\frac{8}{5}$	I	$\frac{4}{5}$	$\frac{2}{5}$	$\frac{1}{5}$
$\mathrm{~A}^{\prime}$	A	F	a	a^{\prime}	$a^{\prime \prime}$

For the major term of the perfect ratio of any Minor confonance is an Even number (i) and is the Numerator of the exponent of its bafe (that of its treble being reduced to 1 , and when that numerator is reduced to an odd number by continual bifections, this odd number is the conftant numerator of the exponents of all the fuperior $8{ }^{\text {ths }}$, whofe denominators muft therefore be continually doubled, which doubles the beats by Art. I. But the doubling the numerators of the exponents of the inferior $8^{\text {ths }}$ alters not their given denominator, as being an odd number, nor confequently the beats.

Tab. 3.
(i) Sect. 2. Art. I. Table.

Tab. 3. The beats which the treble of any imperfect Major confonance, AC , AE or AF , makes with its bafe, in any given time, and with every $8^{\text {th }}$ above it and as many $8^{\text {ths }}$ below it as refult from a continual birection of the Denominator of its exponent, if an Even number, are continual proportionals in the ratio of 2 to 1 ; and the beats of that treble with every $8^{\text {th }}$ ftill lower are ifochronous. But if the Denominator of the given bafe be an odd number, the beats which its treble makes with it and every $8^{\text {th }}$ below it are all ifochronous.

T A B. 3 .					
$\frac{5}{1}$	$\frac{5}{2}$	$\frac{5}{4}$	1	${ }_{8}^{5}$	$\frac{5}{16}$
$\mathrm{A}^{\prime \prime}$	A^{\prime}	A	C*	a	a^{\prime}
6	3	3	1	$\underline{3}$	3
1	1	2		4	8
$\mathrm{A}^{\prime \prime}$	A^{\prime}	A	E	a	a^{\prime}
20	10	5	1	5	5
3		3		6	12
$\mathrm{A}^{\prime \prime}$	A^{\prime}	A	F*	\square	a

For the major term of the perfect ratio of any Major confonance is an Odd number (k), and is the Numerator of the exponent of its bafe (that of its treble being I) and its denominator continually doubled gives the fucceffive denominators
(k) Sect. 2. Art. I. Table,
minators of the exponents of all the afcending $8^{\text {dss, }}$, and continually halved, if it be an even number, gives thofe of the defcending $8^{\text {ths }}$, till it be reduced to an Odd Number; which continues to be the denominator of all the exponents ftill lower. But if the Denominator of the given bafe be Odd, it is itfelf the denominator of the exponents of all the inferior $8^{\text {ths }}$. Therefore the law of the beats is evident by Art. I.
4. Tab. I. 2. 3. Hence any two imperfect confonances which compofe a perfect $8^{\text {th }}$, will beat equally quick, if the minor confonance be below the major; but if the minor be above the major, it will beat twice as quick as the major: the denominators of the exponents of the bafe and treble of the $8^{\text {th }}$ being equal in the firft cafe and as 2 to 1 in the fecond.
5. Thefe examples are fufficient to fhow the agreement of the theory of beats with the eafieft experiments, as requiring no more to be done in many inftances than to examine by the ear whether the fucceffive $8^{\text {ths }}$, as $\mathrm{A}^{\prime}, \mathrm{A}, a, a^{\prime}, \delta x c$, throughout the fcale of the organ or harpfichord be quite perfect, and if not, to make them fo. For the confonances which compofe thofe $8^{\text {ths }}$ being made imperfect, as they ufually are and ought to be, the ear will judge very well whether the beats of fuch concords as by theory ought to be ifochronous, are really fo or not when founded immediately after one another.
6. Thefe experiments attentively tried will be perceptible in fome degree upon a fingle fop of a good harpfichord, and very plainly upon
the open diapafon of a good organ; where the beats of the fimpler concords about the middle of the fcale will be very diftinct and flow enough to be eafily counted. The equal times of beating may be meafured by a watch that fhews feconds or a fimple pendulum of any given length: and if the blaft of the bellows be fufficiently uniform, it may be queftioned whether an $8^{\text {th }}$ may not be tuned perfect or nearer to perfection by the ifochronous beats of a minor and major concord which compofe it (l) than by the judgment of the moft critical ear.
7. Pl. xir. Tab. i. Of confonances which have a common found and a common temperament, the fimpler generally beat flower than the lefs fimple do; the denominators of the exponents of the fimpler being generally fmaller (m).

Scholium 3 .

I. Merfernus and Mr. Sauveur are the only writers I know of that take any notice of the phyfical caufe of the beats of confonances. Souveur imagined that they beat at every coincidence of their pulfes (n), and obferving that he
(l) Art. 4. of thefe. (m) Sect. III. A.t. 5 .
(n) M. Sauveur ayant cherché la caufe de ce Pheno mene, a imaginé avec une earrême vraifemblance, que le fon des deux tuyaux enfemble devoit avoir plus de force, yuand
he could diftinguifh the beats pretty well when they went no quicker than 6 in one fecond, and flill plainer when they went flower, he concluded that he could not perceive them at all when they went quicker than at that rate (0) ; and thence he inferred that octaves and other fimple concords, whofe vibrations coincide very often, are agreeable and pleafant becaufe their beats are too quick to be diftinguifhed, be the pitch of the founds ever fo low ; and on the contrary, that the more complex confonances whofe vibrations coincide feldomer, are difagreeable becaufe we can diftinguifh their flow beats; which difpleafe the ear, fays he, by reafon of the inequality of the found (p). And in purfuing this thought he found, that thofe confonances which beat fafter than 6 times in a fecond, are the very fame that muficians treat as concords; and that others which beat flower are the difcords; and he adds, that when a confonance is a difcord at a low pitch and a concord
quand leurs vibrations, après avoir été quelque temps feparées, venoient à fe réunir et s'accordoient à frapper l'oreille d'un même coup. Hiftoire de l'Acad. Royale des Sciences, année 1700 , pag. 171.8vo.
(o) Donc dans tous les accords où les vibrations fe rencontreront plus de 6 fois par feconde, on ne fentira point de battemens, et on les fentira au contraire avec d'autant plus de facilité que les vibrations fe rencontreront moins de 6 fois par feconde. ibid. pag. 176.
(p) Les battemens ne plaifent pas à l'oreille, à caufe de l'inégalité du fon, et l'on peut croire avec beaucoup d'apparence, que ce qui rend les octaves fi agréables, c'eft qu'on n'y entend jamais de battemens. ibid. pag. 177.
concord at a high one, it beats fenfibly at the former pitch but not at the latter (q).
2. As Mr. Sauveur appeals to numbers, let us fee what evidence they produce. The tones and fevenths major and minor being difcords, muft beat flower than 6 times in one fecond by his own hypothefis. Then let them beat but 4 or 5 times, and it will follow that the major $\mathrm{I}^{\text {th }}$ and minor $5^{\text {th }}$ cannot beat above once in a fecond.

For the lengths of the cycles of perfect confonances to a common bafe, are proportional to the leffer terms of the ratios of their vibrations (r), which being but 8 and 9 in the former difcords and 32 and 45 in the latter (s), fhew, that the latter mult beat 4 or 5 times flower than the former, that is, as flow at leaft as a clock that beats feconds.

But in founding the latter difcords upon an Organ, Harpfichord or Violoncello, even at a low pitch, I find their beats are fo quick that I cannot count them ; or rather they do not beat at all, like imperfect confonances, but only flutter,
(q) En fuivant cette idée, on trouve que les accords dont on ne peut entendre les battemens, font juftement ceux que les muficiens traitent de confonances, et que ceux dont les battemens fe font fentir, font les diffonances; et que quand un accord eft diffonance dans une certaine octave, $\&$ confonance dans whe autre, c'eft qu'il bat dans l'une, et qu'il ne bat pas dans l'autre. ibid. pag. 177.
(r) Sect. ini. Art, 13.
(s) Table of perfect ratios, Sect. 2. Art. r.
flutter, at a flower or quicker rate according to the pitch of the founds.

The truth is, this gentleman confounds the diftinction between perfect and imperfect confonances, by comparing imperfect confonances (t) which beat becaufe the fucceffion of their fhort cycles is periodically confufed and interrupted (u), with perfect ones which cannot beat, becaufe the fucceffion of their fhort cycles is never confufed nor interrupted.
3. The fluttering roughnefs abovementioned is perceivable in all other perfect confonances, in a fmaller degree in proportion as their cycles are fhorter and fimpler, and their pitch is higher, and is of a different kind from the fmoother beats and undulations of tempered confonances; becaufe we can alter the rate of the latter by altering the temperament, but not of the former, the confonance being perfect at a given pitch : And becaufe a judicious ear can often hear, at the fame time, both the flutterings and the beats of a tempered confonance, fuficiently diftinct from each other.

Scholium 4.

I. In all tempered fyftems the times of the fingle vibrations of moft of the confonances are incommenfurable quantities.

G In
(t) Memoires de l'Acad. 1701 , Syttême, general, Sect. xir, maniere de trouver le fon fixe. pag. 473.8 vo .
(u) Dem. of Prop. x.

In the fyftem of mean tones, for inftance, the fingle vibrations of the founds which terminate the tone are in the ratio of $\sqrt{ } 5$ to 2 , the fubduplicate of 5 to 4 , as the mean tone is half the $1 I^{\text {d }}$. Likewife the fingle vibrations of $\mathrm{v}^{\text {ths }}$ tempered by a quarter of a comma, are in the ratio of $\sqrt[4]{5}$ to I , the fubquadruplicate of 5 to I , as the interval of the $\mathrm{v}^{\text {ths }}$ is a quarter of the xvii ${ }^{\text {th }}$ or 2 viri + III. For as $\frac{2}{3} \times \frac{3}{3} \times \frac{2}{3}$ $\times \frac{2}{3} \times \frac{81}{80}=\frac{7}{5}$, fo $V+V+V+V-c=\mathrm{XVII}$; whence $\mathrm{V}-\frac{1}{4} c+\mathrm{V}-\frac{1}{4} c+\mathrm{V}-\frac{1}{4} c+\mathrm{V}-\frac{1}{4} c=$ xvir. Laftly the ratio of the vibrations of two founds whofe interval is a quarter of a comma, is $\stackrel{4}{\sqrt{2}} 8$ I to $\stackrel{4}{\sqrt{2}} 8$, or $\stackrel{4}{\sqrt{2}} 3 \times 3 \times 3 \times 3$ to $\stackrel{4}{\sqrt{2}} 2 \times 2 \times$ $2 \times 2 \times 5$, or 3 to $2 \sqrt[4]{5}$; and confequently the ratio of the vibrations of any confonance tempered by a quarter of a comma, is alfo incommenfurable, as being compofed of the ratio of the vibrations of the perfect confonance, and the ratio of the fingle vibrations which terminate its temperament.

The fame may be faid of any perfect confonance tempered by any aliquot part or parts of a comma; whofe vibrations are always incommenfurable, becaufe 8 I and 80 are not equal powers of any two numbers whatever (x). We may conclude then, that in tempered fyftems the vibrations of moft of the confonances are incommenfurable.
2. Now
(x) See coroll. Prop. 2. virl. Elem. Euclid.

Prop. XI. HARMONICS.

2. Now if the agreeable fenfation of confonances, according to the received principle in Harmonics, be the refult of the frequent coincidences of their pulfes, and confequently be more or lefs agreeable according as the coincidences are more or lefs frequent; all the confonances in tempered fyftems, whofe vibrations are incommenfurable, ought to be the greateft difcords in nature: it being impoffible for their pulfes to coincide more than once in an infinite time. For as no two numbers how large foever, can exprefs the ratio of fuch vibrations, fo no multiple of one vibration can ever be equal to any multiple of the other. And yet experience fhews that fuch confonances are much more agreeable than perfect difcords whofe pulfes coincide very often.

We may approach indeed as near as we pleafe, and certainly much nearer than the fenfe can diftinguirh, towards the exact magnitude of an incommenfurable ratio, by the ratios of whole numbers; but as thefe will grow larger and larger without bounds, fo will the time between the fucceffive coincidences, or the length of the approximating cycle of the pulfes: by which I mean the time of either of the incommenfurable vibrations multiplied by the heterologous term of the approximating ratio.

Let any man tell us then where we may ftop, and which of thofe cycles it is, whofe repetition excites the determinate fenfation of the confonance.

G 2 3. The
3. The like difficulty occurs in approaching gradually even to a commenfurable ratio of the vibrations of any perfect confonance. For if either of its vibrations be pretty much altered at once, and then be made to approach by degrees to its former length, the terms of the feveral approximating ratios will grow larger and larger without bounds and in regular order, except when ratios occur whofe terms are reducible ; and the cycles of their pulfes will accordingly be longer and longer and their coincidences fewer and fewer without limit, thofe interruptions excepted; and yet the confonance will grow better and better by regular degrees till it arrives at perfection, as is certain by experience. For inftance the ratios 30 to 21,300 to 201,3000 to 2001 , \& C , approach nearer and nearer to 3 to 2 , and the $v^{\text {ths }}$ whofe vibrations are in thofe ratios grow more and more harmonious, though the cycles of their pulfes grow longer and longer to infinity.
4. It is therefore impoffible to account for the phrnomena of imperfect confonances upon the principle of coincidences, which indeed is applicable to none but perfect ones. Accordingly Dr. Wallis (y), Mr.
(y) It hath been long fince demonftrated, that there is no fuch thing as a juft hemitone practicable in mufic, and the like for the divifion of a tone into any number of equal parts, three, four or more. For fuppofing the proportion of a tone or full note to be as 9 to 8 , that of the half note muft be as $\sqrt[\checkmark]{ }$ to $\vee 8$, that is as 3 to $\sqrt{ } 8$,

Mr. Euler (z) and others difapprove incommenfurable vibrations as impracticable and inharmonious.
5. But fuppofing the vibrations V , v of imperfect unifons to be incommenfurable, or $V: v:: \sqrt{ } p: \sqrt{ } q$, and x to be an indeterminate vibration, and $V: x:: m: n$, and the ratios of the indeterminate numbers m, n to approach gradually to the given ratio of $\sqrt{ } p$ to $\sqrt{ } q$; though the length $n V,=n x$, of the indeterminate cycle of the pulfes of V and x, increafes without bounds, neverthelefs the length $\frac{n}{m-n} \mathrm{~V},=\frac{m}{m \ldots n} x$, of the indeterminate period of their pulfes tends gradually to a determinate limit $\frac{\sqrt{ } q}{\sqrt{p}-\sqrt{ } q} V=\frac{\sqrt{ } p}{\sqrt{p}-\sqrt{ } q} v$. And this is the period of the pulfes of the incommenfurable vibrations V, v, which excites the determinate fenfation of the imperfect unifons, be the complex cycle of their pulfes ever fo long, infinite or impoffible.

$$
\text { G } 3
$$

I
or as 3 to $2 / 2$, which are incommenfurable quantities; and that of a quarter note as $\sqrt[4]{\sqrt{2}} 9$ to $\stackrel{4}{\sqrt{\prime}}^{8}$, which is yet more incommenfurate ; and the like for any other number of equal parts: which will therefore never fall in with the proportions of number to number. Upon the imperfection of an Organ. Phil. Tranf. N°. 242, or Abridgm. vol. I. p. 705. edit. I.
(z) Denique ob nullam fonorum rationem rationalem præter octavas, hoc genus [muficum] harmoniæ maxime contrarium eft cenfendum; etiamfi hebetiores aures difcrepantiam vix percipiant. Tentamen nove Theoria mufice, cap. IX. fect. 17 . Petropoli. 1739.

I fay determinate fenfation. For though the alternate leffer intervals of the pulfes in the feveral fucceffive periods of V and v, even when commenfurate, are not precifely equal (a), yet it is highly probable that the ear could not diftinguifh a repetition of any one period from the fucceffion of them all, and feems agreeable to experience in obferving the identity of the tone of imperfect unifons held out upon an organ.
6. For further illuftration I will add an example or two. We fhewed above that the vibrations V, v of the mean tone are as $\sqrt{ } 5: 2:: 2.23606796 \& c: 2:: m: m$. Whence the length of the period of the pulfes of V and v, is $\frac{n}{m-n} \mathrm{~V}=\frac{2 \mathrm{~V}}{0.236067968 \mathrm{cc}}=$ $8.47213 \& \mathrm{c} \times V$; which is a medium between 8 V and 9 V , the cycles of the pulfes of the major and minor tones, fomething lefs than the arithmetical, or even the geometrical mean, but not quite fo little as the harmonical mean between them (b).

Again, when V and v are the vibrations of two founds whofe interval is a quarter of a comma, we found $\mathrm{V}: v:: 3: 2 \sqrt[4]{5}$ or $2.99069756 \mathrm{\& c}:: m: n$; whence the period of the pulfes of V and v is $\frac{n}{m-n} \mathrm{~V}=$ $\frac{2.99069756 \mathrm{sc}}{0.00930244 \mathrm{cc}} \times \mathrm{V}=321.4960 \mathrm{Kcc} \times V$.
(a) Coroll. 2. Prop. vir.
(b) See Sect. vir. Def. ir.

Prop. XI. HARMONICS.

Or thus. In approximating towards the ratio of V to v, or 3 to $2 \sqrt[4]{5}$, or 3 to 2.990697 , or 3000000 to 2990697 by fmall numbers (c), the ratios greater than V to v are 322 to 321 , 967 to 964,1612 to $1607, \& \mathrm{c}$. Whence the cycle 32 IV and the periods $321 \frac{1}{3} \mathrm{~V}, 321 \frac{2}{5} \mathrm{~V}$, \&c, are all too fhort.

And the ratios lefs than V to v being 323 to 322,645 to $643,8 \times$ c, the cycle 322 V and periods $32 \mathrm{I} \frac{1}{2} \mathrm{~V}, \& \mathrm{c}$, are all too long. Therefore the true period falls between the laft mentioned limits, agreeably to the former computation.

From what has been faid of imperfect unifons the difficulty vanifhes in other imperfect confonances, by obferving the reduction of the periods of their imperfections to thofe of imperfect unifons, as in Prop. viri.
7. If the ifochronous vibrations of contiguous parcels of air, excited by different frings, cannot be reduced to a Syncbronifin by the mutual actions of the particles, (as I think they comnot,) it will follow that coincident pulfes are not necefary but only accidental to a perfect confonance.

For while an imperfect confonance is founding, if the ratio of the vibrations be made perfect, as in tuning a mufical inftrument, from the inftant of this change the diflocation of the pulfes, whatever it be, will continue unalG 4 tered
(c) See Mr. Cote's Harmonia Menfurarum, Prop. r. Schol. 3.
tered in all the fubfequent fhort cycles; and thus the confonance is perfect without any coincident pulfes, unlefs when the change of the ratio happens at the inftant of the coincidence of two pulfes.
8. This bowever feems indijputable, that coincident pulfes are not neceffary to fuch barmony as the ear judges to be perfect.
For if any long period of imperfect unifons, intercepted between two beats, belengthened greatly and indeterminately, as in tuning an inftrument; any given part of it, as long as any mufical note, will approach indefinitely near to perfect unifons; certainly nearer than the ear can diftinguifh, as being often doubtful of their perfection. And yet throughout that part (fuppofed to be fmall in comparifon to the whole period) the pulfes of one found divide the intervals of the pulfes of the other very nearly in a given ratio, of any determinate quantity between infinitely great and infinitely fmall, in proportion to the diAtance of that part from the periodical point or point of coincidence. Neverthelefs the ear cannot diftinguifh any difference in the harmony of fuch different parts, as is evident by often repeating the fame confonance, which can hardly begin conftantly in the fame place of the long period. And the fame argument is applicable to any given confonance, as being formed by intermitting a proper number of pulfes of each found of the imperfect unifons: and the

Prop. XI. HARMONICS.
the conclufion feems to be confirmed by the following experiment.
9. When any ftring of a violin or violoncello is moved by a gentle uniform bow, while its middle point being lightly touched by the finger, is kept at reft, but not preffed to the fingerboard ; the two halves of the ftring will found perfect unifons, an eighth above the found of the whole ; and will keep moving conftantly oppofite ways.
Becaufe the tenfion and ftiffnefs of the parts of the ftring on oppofite fides of the quiefcent point, compel them to oppofite and fynchronous motions, and thefe parts compel the next to the like motions, and fo on, to the ends of the ftring. Hence, becaufe thefe oppofite motions of the halves of the ftring communicate and propagate the like motions to the contiguous particles of air and thefe to the next fucceffively, it follows that different particles of air at the ear, placed any where in a perpendicular that bifects the whole ftring, will keep moving conftantly oppofite ways at the fame time ; thofe particles, which received their motion from one half of the ftring, going towards the ear, while others are returning from it, which received an antecedent motion from the other half of the ftring: Or, in fewer words, the fuccefive pulfes of one found are conftantly bifecting the intervals between the pulfes of the other: And yet the harmony of the unifons is
perfectly
perfectly agreeable to the ear, as I have often experienced.
10. And in fo rare a fluid as air is, where the intervals of the particles are 8 or 9 times greater than their diameters (d), there feems to be room enough for fuch oppofite motions without impediment: efpecially as we fee the like motions are really performed in water, which in an equal fpace contains 8 or 9 hundred times as many fuch particles as air does (d). For when it rains upon ftagnating water, the circular waves propagated from different centers, appear to interfect and pafs through or over each other, even in oppofite directions, without any vifible alteration in their circular figure, and therefore without any fenfible alteration of their motions.
II. If it be objected to the experiment above, that a conftant bifection of the intervals of the pulfes of one of the unifons by thofe of the other, if true, ought to excite a fenfation of a fingle found an eighth higher than the unifons, and as it does not, that of confequence there is no bifection; a fatisfactory anfwer to the objection might eafily be drawn from the different duration and ftrength of the fingle pulfes of different founds at a different pitch, were it neceffary to enter into that confideration.
12. But
(d) Newt. Princip. Lib. 2. Prop. 50. Schol. and Prop. 23.

Prop. XI. HARMONICS.
12. But after all, as abfolute certainty is difficult to be had in this inquiry, I chofe to give the vulgar definition of a perfect confonance in Sect. iII. Art. 3, as a fimpler principle to build upon, and yet as fit for that purpofe as a more general one would be, even fuppofing it were inconteftable.

Scholium 5.

Having obferved a very frict analogy between the undulations of audible and vifible objects, I will here defcribe it, as an illuftration of the foregoing theory of imperfect confonances.

Pl. xiri. Fig. 39. Let the points a, b, c, \&c and $\alpha, \beta, \gamma, \& c$ reprefent the places of two parallel rows of equidiftant and parallel objects, fuch as pales, pallifadoes, $\& x$ c, and let them be viewed from any large diftance by an eye at any point z. In a plane paffing through the eye and cutting the axes of the parallel objects at right angles in the points, a, b, c, $\& c, \alpha, \beta, \gamma, \& c$, let lines drawn from z through $\alpha, \beta, \gamma, \& \alpha c$, cut the line of the other row in $A, B, C, \& c c$. Then by the fimilar triangles $A B z$ and $\alpha \beta z, B C z$ and $\beta \gamma z$, $C D z$ and $\gamma \delta z$, δx, we have $A B: \alpha \beta:$: $(B z: \beta z::) B C: \beta \gamma::(C z: \gamma z):: C D$: $\gamma \delta:: \& c$. Therefore the antecedents $A B$, $B C, C D, \& c$, which are to the equal confequents $\alpha \beta, \beta \gamma, \gamma \delta, \delta c$, in the fame ratio, are
are alfo equal to one another, and are the apparent projections of the confequents upon the line $a b c$ of the other row.

Hence fuppofing m and n to reprefent the leaft whole numbers in the given ratio of $A B$ to $a b$, we have a line $m \times a b=n \times A B$, equal to the length of the cycle between the apparent coincidences of fome of the objects in one row with fome in the other; as of α and a at A, of x and m at $K, \& c$: and if $n-n$ be not an unit we have a fhorter line $\frac{m-n}{m} a b=\frac{n}{m-n} A B=A X$ or $X K$, equal to the length of the apparent period of their neareft approaches towards coincidences; as on each fide of the point X, according to the demonftration of the vir ${ }^{\text {th }}$ propofition.

But if the point z be fo fituated, that the lines $A B$ and $a b$ or $\alpha \beta$, or $B z$ and βz, or $C \approx$ and $\gamma \approx, \& c$, which are all in the fame ratio, happen to be incommenfurable, it will be impoffible, mathematically fpeaking, for more than one couple of objects to appear coincident (e), and yet the periods of their apparent approaches will fubfirt in this cafe as well as in the other.

Now if the objects be white, or of any colour that reflects more light to the eye than what comes to it from the fpaces between them, and their breadth be confiderable as ufual, the rows will appear the leaft luminous about the coin-
(b) Sce Prop. xi. Schol. 4. Art. 2.

Prop. XI. HARMONICS.

 109coincident objects and the periodical points, $A, X, K, \& c$, where the objects of the nearer row hide the whole or fome part of thofe behind them in the remoter row; and the rows will appear gradually more luminous towards the middle of the periods, where the objects will be feen diftinct from one another if they be not too broad. And the contrary will happen if the objects in the rows be lefs luminous than the fpaces between them.

Confequently if the fpectator fands ftill and moves his eye from one end of the rows to the other, he will fee an alternate fucceffion of light and fhade; and while he moves forwards in any tranfverfe direction $z \omega$, and fixes his eye upon a given place of the rows, he will then fee an undulation of light and fhade, moving forwards quicker or flower according to the celerity of his own motion.

For then the apparent coincidences which were at $A, K, 8 \Delta c$, and confequently the intermediate periodical points $X, \Upsilon, \& c$, will gradually fhift from A to $B, \& c$, and from K to $L, \& c$, as is evident from the angular motion of the vifual rays about the fixt points or objects $\alpha, \beta, \gamma, \& c, x, \lambda, \mu, \& c:$ And this is a known phænomenon.

If the fpectator recedes from the rows, the period $\frac{m}{m-n} a b$ will grow longer, and upon his moving tranfverfely, the vifible undulations will be broader and flower than before, and at a
very great diftance from the rows, will become imperceptible; as being changed into an uniform appearance of both rows in the place of one: quite analogous to the audible undulations of imperfect unifons, as they grow flower and lefs perceptible while the unifons are approaching to perfection.

The like phænomenon refults from two rows of pales that meet in any angle.

PROPOSITION XII.

Imperfect confonances of the Same Name are equally barmonious when their fort cycles are equally numerous in the periods of their imperfections.

As perfect confonances of the fame Name are equally harmonious becaufe their cycles are fimilarly divided by the pulfes of their founds; fo imperfect confonances will be equally harmonious when their periods are fimilarly divided.

Hence all imperfect unifons whofe fingle vibrations have the fame ratio, are equally harmonious, as having fimilar periods (f); and therefore all imperfect confonances of the fame name whofe tempering ratios are the fame, are equally harmonious.
(f) Prop. vil. Cor. 4.

For fince the vibrations of the correfponding perfect confonances have the fame given ratio, m to n, and the vibrations of the imperfect ones are derived from thofe of the fimilar unifons by intermitting m-I and $n-1$ pulfes of their homologous vibrations, fo as to leave equidiftant pulfes in every feries (g); the fimilar periods of the unifons are thereby altered into fimilar periods of imperfect confonances; and the equal intervals of the unifons into equal temperaments of the confonances (b).

And the lengths of thefe fimilar periods being proportional to the fingle vibrations of their bafes or to equimultiples of them, that is, to the lengths of the fhort cycles of the perfect confonances, will contain equal numbers of imperfect fhort cycles (i). Q. E. D.

Coroll. Confonances of the fame name are equally harmonious when equally and fimilarly tempered.

Scholium.

After an organ had been well tuned by making all the tempered $v^{\text {ths }}$ as equally harmonious as the ear could determine, I found that the numbers of their beats, made in equal times, were inverfely proportional to the times of

[^8]of the fingle vibrations of their bafes or trebles, as nearly as could be expected: or that the times between their fucceffive beats, which are equal to the periods of their leaft imperfections (k), were directly proportional to thofe homologous vibrations, or to equimultiples of them, or to the lengths of the fhort cycles, which therefore were equally numerous in thofe periods.

PROPOSITION XIII.

Imperfect confonances of all forts are equally barmonious, in their kind, when their flort cycles are equally numerous in the periods of their imperfections.

Pl. xir. Fig. 34. The times of the fingle vibrations of imperfect unifons being reprefented by $A B$ and $a b$, let $A D$ and $a c$, that is $3 A B$ and $2 a b$ be thofe of imperfect $\mathrm{v}^{\text {ths. }}$. And one length of their imperfect fhort cycle being $2 A D=A G$, and the other being $3 a c=a g$, their difference $G g$ is the diflocation of the pulfes G, g at the end of the firft fhort cycle $\operatorname{Aag} G$, meafured from the coincident pulfes $A a$. And the greater of the two diflocations which terminate the feveral fucceeding cycles, is double, triple, \&c of $G g(l)$.

Again,
(k) Pro. x.
(l) Prop. ViI.

Again, conceiving the pulfes $c, g, l, \& c$, to be now intermitted, let $A D$ and $a e$, that is $3 A B$ and $4 a b$ be the fingle vibrations of imperfect $4^{\text {ths. }}$. And the two lengths of their firft fhort cycle $A N n a$ being $4 A D=A N$ and $3 a e=a n$, their difference $N n$ is the diflocation of the pulfes N, n at the end of that cycle; and in the feveral fucceeding cycles the greater of the two diflocations is double, triple, \&c of $N n$.

And the common period $A Z$ or a_{n} of thole diflocations or imperfections in the fhort cycles of the $v^{\text {ths }}$ and $4^{\text {ths }}$, is the fame as the period or fimple cycle of the pulfes of the vibrations $A B$, $a b$ of the imperfect unifons (m).

Now the two diflocations $G g, N n$, in the firft imperfect cycles of the $v^{\text {ths }}$ and $4^{\text {ths }}$ in that period, are in the ratio of $A G$ to $A N(n)$, the lengths of the cycles, that is of $2 A D$ to $4 A D$, or 1 to 2 : and the two greater diflocations $X y, \mathrm{Q} r$, in the laft imperfect cycles $X y \varepsilon \Delta$, $\mathrm{Q} r \varepsilon \Delta$, in the fame period $A Z$, are in the ratio of their diftances $Z X, Z \mathrm{Q}$, from this end of it : and this ratio is lefs than that of ΔX to $\Delta \mathrm{Q}$, or I to 2. But the two greater diflocations $K \lambda, \Pi \sigma$ in the fubfequent cycles $K \lambda \varepsilon \Delta, \Pi_{\sigma \varepsilon \Delta}$, of the next period, are in the ratio of $Z K$ to $Z \Pi$, which, on the contrary, is greater than that of ΔK to $\Delta \Pi$, or I to 2 .

H
The
(m) Prop. vins,
(n) Prop. vix.

The periods mult be conceived to contain a much greater number of thort cycles than can be well reprefented in a fcheme. And then, as the correfponding diflocations in the $\mathrm{v}^{\text {ths }}$ and $4^{\text {ths }}$ lie farther and farther from Z, the ratio of their diftances and magnitudes will approach nearer and nearer to 1 to 2 .

Therefore 1 to 2 , or the ratio of the lengths of the fhort cycles of the $\mathrm{v}^{\text {ths }}$ and $4^{\text {ths }}$, is either the exact or the mean ratio both of the greater and the leffer diflocations in all their correfponding flort cycles: becaufe the leffer of the increafing diflocations in any fubfequent cycle, is the fame as the greater in the antecedent one.

Now while the length $A G$ or ag remains unaliered, imagine the diflocation $G g$ of the $v^{\text {ths }}$ to be increafed in that ratio of 1 to 2 , and then it will be equal to the former magnitude of the diflocation $N n$ of the $4^{\text {ths }}$, or to $N n$ in Fig. 35, fuppofing the pulfes $C, G, L, \& c \mathrm{c}$ to be abfent. And the firft diflocation $B b$ of the pulfes B, b, of the imperfect unifons, being at the fame time increafed in the fame ratio, their period $A Z$, which is allo that of the diflocations in the $v^{\text {ths }}(0)$, will be diminifhed very nearly in that ratio inverted (p). And thus the prefent period of the imperfect $\mathrm{v}^{\text {ths }}$ and the former period of the $4^{\text {ths }}$, are in the ratio of the lengths of their fhort cycles; which therefore

[^9]fore are equally numerous in their refpective periods.

And fince the greater and leffer diflocations at the ends of the correfponding fubfequent fhort cycles of the $v^{\text {ths }}$ and $4^{\text {ths }}$, are now refpectively equal, either exactly or at a medium of one with another, and equally numerous too, the whole periods compofed of thefe fhort cycles, will be equally harmonious. Becaufe thofe equal diflocations of the pulies in the correfponding fhort cycles, are the caufes that fpoil their harmony : and caufes conftantly equal will have equal effects.

The conclufion will be the fame if the diflocation $N n$, in the firft cycle of the $4^{\text {ths }}$ in cither figure, be contracted to the magnitude of the diflocation $G g$ belonging to the $\mathrm{v}^{\text {ths }}$ in the other. For then the new period of the $4^{\text {ths }}$, being double of the old one (q), will be to the old one, or that of the $\mathrm{v}^{\text {ths }}$, as $A N$ to $A G$, that is, in the ratio of the lengths of their fhort cycles, which therefore are equally numerous in thefe periods: and the diflocations at the ends of the feveral fubfequent fhort cycles of the $4^{\text {ths }}$, being likewife contracted to the refpective magnitudes of thofe of the $v^{\text {ths }}$, the confonances are again made equally harmonious.

And laftly, fince either of thofe confonances is equally harmonious to another of the fame name, at any other pitch, when their hort H_{2} cycles

[^10]cycles are equaliy numerous in their periods (r), it appears that $4^{\text {ths }}$ and $v^{\text {ths }}$ are equally harmonious at any pitches, when their fhort cycles are equally numerous in their periods. And the like proof is plainly applicable to any other cafe of thefe or any other confonances: I mean when the common period of the imperfect unifons is terminated at firft either by coincident pulfes or periodical points; as will plainly appear by conceiving a fhort cycle or two to refult from a proper intermiffion of the pulfes of imperfect unifons on each fide of fuch points in fig. 24, 25. Q.E.D.

Coroll. I. Imperfect confonances are more harmonious in the fame order as their fhort cycles are more numerous in the periods of their imperfections.

For if any two imperfect confonances be fuppofed equally harmonious, their fhort cycles will be equally numerous in their periods, by the propofition. Then if either of the given periods be lengthened, the fhort cycles will be more numerous in it, and the leaft diflocation of their pulfes being fmaller than before, and the greateft much the fame (s), the diflocations will firft increafe and then decreafe by fmaller and more degrees from one end of the period to the other. And thus the confonance will be more harmonious than it was at firft, or than the other given confonance.

[^11]And on the contrary, if the period of either confonance be fhortened, the number of its fhort cycles will be diminifhed, and the diflocations of their pulfes will increafe and decreafe by larger and fewer degrees than before. And thus the confonance will be lefs harmonious than it was before, or than the other given confonance.

Coroll. 2. Imperfect confonances are more harmonious in the fame order, as their temperaments multiplied by both the terms of the ratios of the fingle vibrations of the correfponding perfect confonances, are fmaller ; and are equally harmonious when thofe products are equal.

Pl. xir. Fig. 34, 35. For the vibrations of imperfect unifons being $A B$ and $a b$ and the terms of any perfect ratio of majority m and n, the vibrations of an imperfect confonance tempered fharp are $m A B$ and $n a b$, and thofe of the imperfect confonance tempered flat are $m a b$ and $n A B$; and the periods of the leaft imperfections in both have the fame length as the period of the imperfect unifons (t); which length, fuppofing $A B: a b:: R: r$ in the leat integers, is $\frac{r}{R-r} A B$; call it p.

Now the length of the imperfect mort cycle of either of thofe imperfect conforiances is $m n A B(u)$; call it c. Then H 3
(t) Prop. virr. (u) Prop, vill, Cor, $=$,
$\frac{p}{c}=\frac{r}{\mathrm{R}-r} A B \times \frac{1}{m n \mathrm{AB}}=\frac{1}{m n} \times \frac{r}{\mathrm{R}-r}=\frac{1}{m n t}$ by taking $t=\frac{\mathrm{R}-r}{r}$, which being as the logarithm of the tempering ratio $R: r$, or $A B$ to $a b(x)$ is very nearly as the temperament of both thofe confonances (y).

Therefore in the fame order in which the values of $\frac{t}{c}$ or $\frac{1}{m n t}$ are greater, or the values of $m n t$ are fmaller, the correfponding confonances are more harmonious, by corol. I ; and are equally harmonious when the values of $m n t$ are equal, by the prefent propofition.

Coroll. 3. Confequently imperfect confonances are equally harmonious when their temperaments have the inverfe ratio of the products of the terms of the perfect ratios of the correfponding perfect confonances.

For when the values of the product $m n \times t$ are equal, the values of t have the inverfe ratio of the values of $m n$.

Coroll. 4. When the products $m n$ of the terms of the perfect ratios are equal, the tempered confonances are more harmonious in the fame order as their temperaments are fmaller; and are equally harmonious if their temperaments be equal.
(x) Cor. 2. Lemma to Prop. is and Prop. vili cor. I. (y) Sect. I. Art. 1 i.

Prop. XIII. HARMONICS.

For if the values of $m n$ or $\frac{1}{m n}$ be equal, the values of $\frac{t}{c}=\frac{1}{m n} \times \frac{1}{t}$ are greater in the fame order as thofe of $\frac{1}{t}$ are greater, or as thofe of t are fmaller; and are equal when the values of t are equal.

Coroll.' 5. Therefore imperfect confonances of the fame Name are more harmonious in the fame order as their temperaments are fmaller; and are equally harmonious when they are equal.

Becaufe the terms of the perfect ratios of confonances of the fame name are the fame, and their product the fame.

Coroll. 6. Imperfect confonances equally tempered are more harmonious in the fame order as the products of the terms of the perfect ratios belonging to the perfect confonances are fmaller; and are equally harmonious when thofe products are equal.

For the values of t being fuppofed equal, thofe of $\frac{p}{c}=\frac{1}{m n} \times \frac{1}{t}$ are greater in the fame order as the values of $\frac{1}{i n n}$ are greater, or as thofe of $m n$ are fmaller; and the former values are equal when the latter are fo.

Coroll. 7. Imperfect confonances equally tempered are generally more harmonious in the fame order as they are fimpler, the pure ones chiefly excepted (z), which are more harmoH_{4}
nions
(z) Sect. iII. Art. 8 ,
nious than fome others that are fimpler; though feparately confidered they follow that order exactly.
This will appear from the fixth corollary by a feries of the products of the terms of the ratios in the firlt column, compared with the feries of numbers in the fecond column of the table in Sect. niI. Art. 5, hewing the order of the fimplicity of confonances.

Coroll. 8. Confequently fimpler confonances will generally bear greater temperaments than the lefs fimple will; or the leis fimple ones generally fpeaking will not bear fo great temperaments as the fimpler will : contrary to the common opinion (b).

Coroll. 9. The tempered concords in the fyitem of mean tones (c) are not equally harmonious in their kinds.

For by Coroll. 6, and by infpection of the terms of the perfect ratios annexed to the characters of the concords in the firft of the tables
(b) Octavæ autem fiant exactæ; nam vel minimus octava defectus fit intolerabilis. Dechales Curfus math. Tom. iv. de Mufica, cap. xi.
(b) Octavarum autem omnium unica eft fpecies, eaque perfecta ratione 1 ad 2 contenta. Hoc enim intervallum, propter perfectionem, vix aberrationem à ratione I ad 2 pati poffet, quin fimul auditus ingenti moleftia afficeretur. Namque quo perfectius perceptuque facilius eft intervallum, co magis fenfibilis fit error minimus; minus autem fentitur exiqua aberratio in intervallis minus perfcetis. Tentamen nove Theoris mufica, cap. Ix. fect. 10. $P_{\text {ctropoli }} 1739$.
(c) Prop. 2.
in the next fection, it will appear, that the $v^{\text {th }}$ and $4^{\text {th }}$ and their compounds with vini ${ }^{\text {ths }}$, are more harmonious than the $\mathrm{vi}^{\text {th }}$ and 3^{d} and their compounds with equal numbers of viII ${ }^{\text {ths }}$, as being all equally tempered in that fyftem (d).

Coroll. Io. The harmony of thofe concords is ftill more unequal in the Hugenian fyftem, refulting from a divifion of the octave into 31 equal intervals (e).

Becaufe the common temperament of the $\mathrm{V1}^{\text {th }}$ and 3^{d} and their compounds with vin ${ }^{\text {ths }}$, which by Coroll. 4 and 9, fhould be fmaller than that of the $\mathrm{v}^{\text {th }}$ and $4^{\text {th }}$ and their compounds with vint ${ }^{\text {ths }}$, to render them equally harmonious, is on the contrary fomething greater.

Coroll. in. Imperfect confonances are more harmonious both as they beat flower, and as the cycles of the perfect confonances are fhorter.

For the quantities $\frac{p}{c}$ will be greater on both accounts (f) and the harmony better (g).

Coroll. I2. Imperfect confonances having the fame Bafe are more harmonious in the fame order as their Beats made in equal times and multiplied by the Minor terms of the perfect ratios of the refpective perfect confonances are fmaller: and are equally harmonious when thofe products are equal, that is, when the beats are inverfely as the minor terms (b).
(d) Prop. in. Coroll. 3.
(t) See Prop. XviI, Scholium,
(f) Prop. xi.
(g) Prop, xil and xine

For let the fingle vibrations of the bafe and treble of an indeterminate perfect confonance be Z and z, and $Z: z:: m: n$ in the leaft numbers, then the fhort cycle $c=n Z=m z$, and putting β for the number of beats made in any given time by the correfponding imperfect confonance, the period p is as $\frac{1}{\beta}$ as being equal to the interval of the fucceffive beats (i); and the harmony being as $\frac{p}{c}$ or $\frac{1}{\beta n Z}$ or $\frac{1}{\beta m z}$, is better as the values of βn are fmaller if Z be conftant, or as βm is fmaller, if z be conftant, by Coroll. i. Prop. xir.

Coroll. I3. Hence if the Bafes and Beats be the fame, the harmony is better as the minor terms are fmaller and equally good when they are the fame: or if the Bafes and Minor terms be the fame, it is better as the beats are flower, and equally good when they are ifochronous.

Coroll. I4. And the two laft corollaries are applicable to trebles and major term, by reading trebles inftead of bafes and major terms inftead of minor, as appears by the demonitration.
(b) See Pl. I. Fig. 3. and Plate xir. Tab. I.
(i) Prop. x .

Defin. I. HARMONICS.
123

SECTION VII.

Of a Syftem of founds wherein as many concords as polfible, at a medium of one with another, flall be equally and the moft barmonious.

DEFINITION I.

The Arithmetical Mean among any number of quantities, is to the fum of them under their given fogns, as an unit is to their number; and bas the fame fogn as their fum bas: Or if they be expreffed by numbers, it is the quotient of their fum divided by their number.

Thus the arithmetical mean among the quantities $a, b, c,-d$, is $\frac{a+b+c-d}{4}$.

Coroll. i. Hence the fum of the exceffies of all the greater quantities above their arithmetical mean, is equal to the fum of the defects of all the fmaller from the fame.

For let the arithmetical mean $\frac{a+b+c-d}{4}$ $=r$, then $a+b+c-d=4 r=r+r+r+r$. Whence

Whence if a and b be feverally greater than r, we have $a-r+b-r=r-c+r+d$.

Pl. xini. Fig. 40. Accordingly if the lines $a 0$, $b 0, c o-d o$ and ro, be proportional to $a, b, c,-d$ and r, the fum of the parts $r a, r b$ on one fide of the point r, is equal to the fum of the parts $r c, r d$ on the other fide of it.

Coroll. 2. If any quantity q be added to, or taken from every one of the quantities $a, b, c,-d$, their arithmetical mean will accordingly be augmented or diminifhed by that quantity q.

For let $a+b+c-d=4 r$, then r is their arithmetical mean. But $a+q+b+q+c+q$ $-d+q=4 r+4 q=4 \times \overline{r+q}$, and therefore $r+q$ is the arithmetical mean among thofe augmented quantities $a+q, b+q, c+q,-$ $d+q$: and by changing the fign of every q, it appears that $r-q$ is the like mean among the diminifhed quantities $a-q, b-q, c-q$, -d-q.

Coroll. 3. If every one of the quantities $a, b, c,-d$, be increafed or diminifhed in any given ratio of I to n, their arithmetical mean will alfo be increafed or diminifhed in the fame given ratio.

For let $a+b+c-d=4 r$, then r is their arithmetical mean. But $n a+n b+n c-n d$ $=4 n r$, and therefore $n r$ is the arithmetical mean among the quantities $n a, n b, n c,-n d$.

DEFINITION II.

The Harmonical Nean among any number of quantities, is the reciprocal of the arithmetical mean among their reciprocals.

For inftance, the reciprocals of a, b, c, are $\frac{1}{a}$, $\frac{1}{b}, \frac{1}{c}$, whofe arithmetical mean is $\frac{1}{3} \times \overline{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}$ and its reciprocal $\frac{1}{\frac{1}{3} \times \frac{1}{a}+\frac{1}{b}+\frac{1}{c}}$ is the harmonical mean among a, b, c; where I fignifies any given conftant quantity.

Pl. xin. Fig. 4I. Likewife in any hyperbola where the ordinates parallel to an afymptote are the reciprocals of their abfciffes, meafured from the center upon the other afymptote; if an abfciis ro be the arithmetical mean among the abfciffes $a 0, b 0, c 0, d o$, its ordinate r_{ρ} is the harmonical mean among the ordinates $a \alpha, b \beta$, $c \gamma, d \delta$ by the definition, r_{ρ} being the reciprocal of the arithmetical mean ro among their reciprocals, ao, bo, co, do.

Likewife if an ordinate m_{μ} be the arithmetical mean among the ordinates $a \alpha, b \beta, c \gamma, d \delta$, its abfiifs $m o$ is the harmonical mean among their abfciffes, $a 0, b 0, c 0, d o$: and on the contrary.

Coroll.

Coroll. I . The arithmetical mean is greater than the harmonical mean among the fame quantities, if they all have the fame fign.

For let the line β_{ρ}, produced through the top of either of the ordinates next to r_{ρ}, cut the reft in f, g, b, and the afymptote $r o$ in e. Then becaufe $r o$ is the arithmetical mean among $a 0, b 0, c o, d o$, the line $r e$ is the arithmetical mean among the lines $a e, b e, c e, d e(k)$; and $r \rho$ the arithmetical mean among the proportional lines $a f, b \beta, c g, d b(l)$, which, excepting the common ordinate $b \beta$, are feverally fmaller than the hyperbolical ordinates, $a \alpha$, $b \beta, c \gamma, d \delta$; whofe arithmetical mean $m \mu$ is therefore greater than $r_{\rho}(m)$, the harmonical mean among the fame ordinates.

Coroll. 2. The difference between the arithmeetical and the harmonical means among the fame quantities, will be very fmall when the differences of the quantities themfelves are fo.

This will appear by conceiving the ordinates $a \alpha, b \beta, c \gamma, d \delta$ to approach gradually towards one another till they coincide. For then the differences between the hyperbolical ordinates $a a, b \beta, c \gamma, d \delta$, and the lines $a f$, $b \beta, c g, d b$, and confequently between their arithmetical means $m \mu, r_{\rho}$, will gradually decreafe to nothing. But $r \rho$ is alfo the harmonical mean among thofe ordinates.

Coroll.

[^12]Coroll. 3. By increafing every quantity in any given ratio, the harmonical mean among them will be increafed in the fame ratio.

For the reciprocals of the increafed quantities, and the arithmetical mean among them (n), will feverally be diminifhed in that ratio; and the reciprocal of this mean, which is the harmonical mean among the increafed quantities, will of confequence be increafed in the fame ratio.

Coroll. 4. Fig. 42, 43. Whatever be the figns of the propofed quantities $a \approx, b \beta, c \gamma$, $d \delta$, their harmonical mean r_{ρ} has always the fign of the fum of their reciprocals $a 0, b 0$, $c 0, d o$, or of $r 0$, the arithmetical mean among them.

For the reciprocal of each quantity has the fign of the quantity itfelf, and according as their fum is affirmative or negative, fo is their arithmetical mean (0), and fo is its reciprocal, or the harmonical mean among the propofed quantities.
(n) Defin. 5. Coroll. 3.
(o) Defin. I.

PROPOSITION XIV.

Infead of Several imperfect concords differently tempered and belonging to the fame perfect one, if it be neceffary to ufe but one, let the period of its imperfections be the aritbmetical mean among all the periods of thofe concords, and it will beft anfwer the feveral purpofes of every one.

Becaufe the exceffes of the longer periods above the arithmetical mean are equal, one with another, to the defects of the fhorter from the fame, and becaufe the arithmetical mean period is longer (p) and therefore more harmonious (q) than the harmonical mean among the fame. Q.E.D.

(p) Def. 2. Coroll. I. Sect. vir.
(g) Prop. xiri. Coroll. I.

PROPOSITION XV.

The tempered concords in any one of the parcels derived from the $\mathrm{V}^{\text {th }}, \mathrm{vi}^{\text {th }}$ or $11^{\mathrm{d}}(r)$, whatever be their common temperament, are confantly more barmonious in the fame immutable order as the products of the termes of the perfeet ratios belanging to the refpective perfect concords are fmaller; and thofe concords only are equally barmonious which bave equal products belonging to them; and no others can be made fo, becaufe they cannot bave different temperamentswhile the oetaves are perfeet.

The truth of this propofition appears from prop. xiif. coroll. 6. and prop. iII. Q.E.D.
(r) In the fcholium to prop. In the concords were difributed into three parcels, which may be feen in one yiew in Table I placed after fchol. 2. prop. xwi.

PROPOSITION XVI.

To find the temperament of a fytem of Sound's of a given extent, wherein as mainy concords as poficle, at a medium of one with anotber, flall be equally and the moft barmonious.

Into the fecond and third columns of the II Table following (s), transfer every couple of concords in the given fyitem, whofe characters can be taken from the different parcels in the $1^{\mathfrak{R}}$ Table; omiting all other couples whofe characters are both fituated in any one of the parcels. And after each couple place the ratio of the temperamerts which would make the two concords equally harmonious in their kind (t).

Then will the corollaries to the $1 \mathrm{v}^{\text {th }}, \mathrm{v}^{\text {th }}$ and $\mathrm{v}^{\text {th }}$ propofitions give the temperaments themfelves, or the politions of the temperers Orst, Orst, \&cc, in Fig. 44, Pl. xiv, belonging to every one of thofe ratios.

Among the temperaments in the three feveral parcels $G r, G r, \& \in c, A s, A s, \& \in C, E t, E t$, Scc, taking three harmonical means, $G D, A H$, EM, and transerring them to Fig. 45, draw three temperers ODef, Ot $\mathrm{Hz}, \mathrm{OklM}$, and taking
(1) After Schol. 2. of this prop.
(t) Prop. xin, coroll. 3 .
taking $E q$ the arithmetical mean among the three temperaments $E M, E f, E i$, the temperer $O n p q$ will approach very near to the pointion required in the propoftion.

If greater exactuefs be defired, among the three temperaments in the three feveral parcels $G D, G g, G k ; A H, A c, A l ; E M A, E f, E i$, taking three harmonical means, $G D^{\prime}, A H^{\prime}, E M$, and transferring them to Fig. 46, draw three new temperers $O D^{\prime} e f^{\prime}, O g^{\prime} H^{\prime} i^{\prime}, O k^{\prime} l^{\prime} M^{\prime}$; and taking $E q{ }^{\prime}$ the arithmetical mean among the three temperaments $E M^{\prime}, E f^{\prime}, E i^{\prime}$, the temperer $G n^{\prime} p^{\prime} q^{\prime}$ will approach fill nearer towards the required pofition.

And by repeating the like conftruction we may approach as near as we pleafe (u). Q.E.I.

THE DEMONSTRATION.

In combining the concords all the couples whofe characters are both in any one of the parcels in Tab. I are omitted; their harmony with refpect to one another, or the proportions of their periods being immutable, by reafon of their common temperament (x).

Pl. xiv. Fig. 44. Now fuppofing G a to be the arithmetical mean among all the temperaments I 2 Gr ,
(2:) Want of room in fuch fmali plates made it neceffary to alter the true proportions of the lincs in the figures; otherwife fome parts of them would have appeared confufed.
(x) Prop. xr.
$G r, G r, \& x c$, of the firft parcel of concords, and drawing the temperer $O a b c$, the temperaments $A b$ and $E c$ will be the like Means among $A s, A s, \& c c$, and $E t, E t, \& c c,(y)$. Whence if the periods of concords of the fame name to the fame bafe were proportional to their temperaments, the beft temperer would be $\operatorname{Oabc}(z)$:

Becaufe the period of the $\mathrm{v}^{\text {th }}$, for inftance, belonging to the temperament $G a$, would then be the arithmetical mean among all the other periods of the $\mathrm{v}^{\text {ths }}$ to the fame bafe, anfwering to the feveral temperaments $G r, G r, \& c$. And the like may be faid of the periods of the $4^{\text {th }}$ and of every other concord in this firft parcel, as having the temperaments $G r, G r, \& c$, common to them all, and likewife of the periods of the feveral concords in the other two parcels, with refpect to their temperaments $A b, A s, \& \varepsilon c$, and $E c, E t$, \& cc.

But fince the periods of concords of the fame name to the fame bafe are (not directly but) inverfely proportional to their temperaments (a); the period of the $\mathrm{v}^{\text {th }}$, or any other concord, belonging to the arithmetical mean temperament $G a$ is (not the arithmetical but) the harmonical mean among the other periods of that name, anfwering to the temperaments $G r, G r$, sec ; and confequently is fhorter (b) and therefore

[^13]fore lefs harmonious than the arithmetical mean period among them (c) anfwering to the harmonical mean temperament $G D$: And what has been faid of the periods in that parcel is applicable to thofe of the other two, with refpect to the arithmetical and harmonical mean temperaments $A b$ and $A H, E c$ and $E M$.

Therefore the arithmetical mean periods belonging to the harmonical mean temperaments $G D, A H, E M$, would beft anfiwer the defign of the propofition, if the points D, H, M were all fituated in one temperer.

For fince the fums of the temperaments terminated at the feveral temperers Orst, Orst, \&c, are the leaft that can render the concords in each couple equally harmonious in their kind (d), it follows that the fums of all the temperaments $G r, G r, \& \infty$, in the firft parcel, of all the temperaments $A s, A s, \&<c$, in the fecond, and of all the temperaments $E t, E t, \mathcal{E} c$, in the third, taking one fum with another, are alfo the leaft pofible: the fum total being the fame in both diftributions of the particulars.

The fum of the harmonical temperaments $G D, A H, E M$ being therefore the leart poffible (e), and that of all the correfponding arithmetical mean periods being the greateft (f), would render the fyitem of periods at a meI_{3} dium
(c) Prop. xiri. coroll. i.
(d) Prop.iv. v. vi.
(e) Def. I, and cor. I, Def. 2, fect. vita
(f) Prop, ix. cor. 4.
dium of one with another, the mon harmonious.

Lut in reality the three harmonical points D, H, M camot fall into any one temperer. For the concords in the firft parcel being fimpler than thofe in the fecond and third (g) and therefore requiring a fimaller temperament (b), it appears, by cor. $6,7,8$, prop. 111, that the beft temperer of the fyftem muft lie within the angle $A O E$, and to muft the arithmetical mean iemperci $O a b c$, as lying not far from the beft; and therefore mut have the points G, E on one fide of it and A on the other: And the harmonical means $G D, E M, A H$ being lefs than the refpective arithmetical means $G a, E c, A b(i)$, the points D and $I M$ murt lie on the fame fide of $O a b c$ as G and $E d$, and H on the other fide. Therefore if a temperer could pafs thro' D and M, yet ir could not pafs thro' H.

Pl.xv. Fig. 45. In the folution of the problem it was therefore neceffary to reduce the three temperers ODef, OgHi,OklM to one, by lo drawing the temperer Onpy, as to make Eq the arithmetical mean among $E M, E f, E i$, and confequently $A p$ the like mean among $A H, A e, A l$, and $G n$ the like mean among C D, Gg, Gk(k).

Now the differences of the three temperamients in each of thofe parcels being but fmall,
(g) Tab. I following, compared with art. 5. fect. InI,
(b) Prop. xiri. cor. 8.
(i) Defin. 2, cor. 1 . fect. vir.
(i) Def. I. coroil. I. 2. 3.
as will appear by the following calculation (l), the arithmetical means among them will differ but little from the refpective harmonical means among the fame (m), which would be fitter for the purpofe if their extremities $D^{\prime}, H^{\prime}, M^{\prime}$ could be fituated in any one temperer (n). Confequently as the temperer Onipq falls in the middle among the three temperers conceived to pafs through the harmonical points $D^{\prime}, H^{\prime}, M^{\prime}$, it will nearly anfwer the feveral purpofes of thofe three, and approach very near to the fituation of the requised temperer.

Pl. xvi. Fig. 46. Hence and by prop. xiv, it appears that a repetition of this laf conftruction, as defcribed in the folution, will give a temperer $O n^{\prime} p^{\prime} q^{\prime}$ approaching ftill nearer to the required fituation. Becaufe the latter temperaments $E M^{\prime}$, $E f^{\prime}, E i^{\prime}$ differ lefs from one another (0) and confequently from their arithmetical mean $E q^{\prime}$, than the former, $E M, E f, E i$, did from one another and from their arithmetical mean Eq.

And as the fame may be faid of the temperaments of the other two parcels, it appears that by a further repetition of the fame conftuction, we may find a temperer approaching as near as we pleafe towards the pofition required in the propofition. Q.E.D.

Coroll. I. Fig. 45. The comma, or four times the line $G I$, being the unit, and fuppofing any
I 44
(l) Tab. vi. column 2.
(m) Def. 2. coroll. 2. (n) Prop. XIV.
(0) Tab. Vir. at the end of it.
three temperaments of different parcels to be given, as $G D=d, A H=b$ and $E M=m$, it will be eafy to colleat, (from the fimilar triangles under the line $O I_{3} E$, the three temperers $O D i f, O g H i, O k l M$, and the three parallels $G D, A H, E M$,) that $G g=\frac{1-b}{3}$ and $G k=\frac{1+m}{4} ; A c=1-3 d$ and $A l=\frac{1-3 m}{4} ;$ $E f=4 d-1$ and $E i=\frac{1-4 b}{3}$; provided the three temperers be all fituated within the angle EOA; but if OH or OM lies out of it beyond A or E refpectively, the fign of b or m will accordingly be changed in thofe theorems.

Coroll. 2. Hence we have the three arithmetical mean temperaments, $G n=\frac{1}{3} \times$ $\overline{d+\frac{1-b}{3}+\frac{1+m}{4}}, A p=\frac{1}{3} \times \overline{I-3 d+b+\frac{1-3^{m,}}{4},}$ and $E q=\frac{1}{3} \times 4 d-1+\frac{1-4 b}{3}+m$.

Scholium I.

P1. xyir. Fig. 47 ferves to illuftrate part of the demonitration of the propofition, by reprefenting to the eye the proportions of the periods of the concords. It is thus conftructed. The line $A I$ being parallel to $E O$, the middlemoft parcel of hyperbolas $\frac{1}{5}, x \frac{1}{6}, y \frac{1}{10}, z_{12}^{\frac{1}{2}}$, \&cc, are drawn to the afymptotes $A T, A_{3}$; and their ordinates to their common abícifs A_{3} are made proportional to the fractions $\frac{1}{5}, \frac{1}{6}, \frac{1}{10}, \frac{1}{12}, \& \mathrm{cc}$.

Hence

Hence when the imperfect vi, 3^{d}, vi + viII, $3^{d}+$ viif, \& c, to the fame bafe are each tempered by a quarter of a comma, reprefented by the common abiciis A_{3}, their periods are proportional to thofe ordinates (p) ; and when they have any other temperament reprefented by the abicifs $A s$, their periods ate then proportional to the ordinates $s v, s x, s y, s z, \& c .(q)$.

And the like conftruction being made for the other two parcel of concords, the ordinates erected from the interfections r, s, t of any temperer Orist, fhew the proportions of the periods in the whole fyftem: and thefe proportions are the fame whatever be the unit of the fractional ordinates.

Scbolium 2.

In order to calculate the required temperaments of a fytem of any given extent, it will not be amifs to explain the following tables.
I. According to the folution of the problem, fee whether every two characters of the concords, each of which lie in the different parceis in Tab. I, be placed over againft one another in the fecond and third columns of Tab. Ir^{d}. Part I.
2. Then examine whether the ratios placed after thofe characters in the $4^{\text {th }}$ column of that table, be rightly deduced from the fractions annexed
(p) Prop. Ix. coroll. 5. and Tab. I. at the end of the next Scholium.
(9) Prop. Ix. coroll. 4.
nexed to the fame characters in Tab.r, according to the rule in prop. xiri. coroll. 3 .
3. See whether all the temperaments in Tab. Iv be rightly deduced from thofe ratios in Tab. 11^{d}, by the corollaries to prop. Iv, v, vI ; and whether the numbers in the firft column of each table correfpond to the fame ratios and concords.
4. Examine whether the reciprocals in Tab.v, of the temperaments in Tab. iv be right, that is, whether the product of the quotient by the divifor, differs from the dividend by lefs than half the divifor. When a reciprocal is negative, as coming from a negative temperament of the $1 \mathrm{I}^{\mathrm{d}}$ or $\mathrm{VI}^{\text {th }}$, which lies wholly out of the angle $A O E, I$ fubtract it from \circ and place the remainder in the table inftead of the reciprocal itfelf. Thus at $\left.\mathrm{N}^{\mathrm{O}} \mathrm{Io},-6\right) 26(=-4.33333$ \& c , which fubtracted from o gives $\overline{5} .66667$ to be transferred to Tab. I $^{\text {d }}$ Part $I^{\text {d }}$ and there added to the pofitive reciprocals, for the fake of uniformity in the work; the integer $\overline{5}$ being only negative and the decimals .66667 affirmative. For n being any given integer, the number $n-4-\frac{5}{3}=n-5+\frac{2}{3}$.
5. See whether the reciprocals in Tab. v be rightly transferred into the refpective columns of Tab. $I^{d^{d}}$ Part II I^{d}, which is readily done by means of the correfponding numbers in the firft column of each table.
6. Caft up the feveral dozens of reciprocals in Tab. iI ${ }^{d}$ Part I^{d}, and transfer the fums to Tab. nir and there caft them up.
7. Tab。
7. Tab. vi is thus deduced from Tab. ini. By the folution of the problem the fraction $\frac{12}{42.72013},=G D$ in Fig. 44, is the harmonical mean among the temperaments $G r, G r$, \&x ; becaufe its reciprocal $\frac{42 \cdot 72013}{12}$ is the arithmetical mean among their reciprocals, as being their fum divided by their number. The fame is to be underfood of all the other fractions: and as the value of the temperament $E q$, computed from coroll. 2. prop. xvi, comes out affirmative, by the coroll. to prop. Iv, v, vi, it is part of the interval $E C$ of the perfect HI d, and therefore is a negative temperament of that concord, or an affirmative one of its complement to the octave. This is the firft approximation towards the required temperament.
8. Tab. vir contains the calculation of $E q^{\prime}$, the fecond approximation towards the true temperament of the $1 I^{\text {d }}$, in a fyltem whofe extent is but one octave, and is fufficiently evident from cor. 1, 2, prop. xvi, and Tab. vi. And by a like calculation the values of $E q^{\prime}$, in a fyftem of two and of three octaves, will be found as put down under thofe of $E q$ in Tab. vi; care being taken in the operations to continue the quotients in decimals as far as they are juft.
9. Therefore the refult of the whole is this. As all the parts of mufical compofitions in any given place (fetting afide double bafes) are generally contained within three octaves, and as their harmony is ftronger and better within that compafs
compafs than it would be in a larger; I chufe to make all the concords within every three octaves equally harmonious and no more, be the extent of the fyltem ever fo great; and confequently to diminifh the $I I^{d}$ by $\frac{1}{9}$ comma, this being very nearly the value of the laft $E q^{\prime}=$ 0. 11024 in Tab. vi.

1o. Hence in the fyftem of equal harmony the temperaments of the $\mathrm{v}^{\mathrm{th}}, \mathrm{V} 2^{\text {th }}$ and $1 \mathrm{II}^{\mathrm{d}}$ are $\frac{-5}{18}, \frac{+3}{18}$ and $\frac{-2}{18}$ of a comma refpectively (r) and are proportional to the mufical primes 5,3 and 2. (s)
11. In determining thefe temperaments of the diatonic fyftem, I have regarded no more confonances than the concords. I. Becaufe the difcords are feldomer ufed than the concords. 2. Becaufe the ear is generally lefs critical in the difcords than in the concords. 3. Becaufe a mean temperament among thofe of the concords and difcords too, would differ from that of the concords alone, and therefore be lefs fuitable to them.
12. Lafly I have kept the octave perfect. I. Becaule it is the fimpleft and moft harmonious
(r) Prop. III and its $2^{\text {d }}$ and 3^{d} coroll.
(s) But if any one chufes to have all the concords in 4 odtaves made equally harmonious, he will find by continuing the tables, that the nid muft be diminifhed by $\frac{987}{10000}$ of a comma, which being nearly $\frac{10}{10}$ comma, the temperaments of the $\mathrm{r}^{\text {th }}$, yith and Ind will then be $\frac{-11}{40}, \frac{+7}{40}$ and $\frac{-4}{40}$ of a comma refnectively.
nious of all the concords, both in itfelf and its multiples. 2. Becaufe fome one interval muft be kept perfect, in order to determine the variations of the temperaments of the reft $(t) .3$. Becaufe upon feveral trials of keeping other intervals perfect infead of the octave, many reafons have occurred to me for rejecting every one of them.
13. Does it not follow then, that the fyftem of equal harmony, as above derived from the beft fyftem of perfect intervals (u), is the beft tempered and moft harmonious fyftem that the nature of founds is capable of? (x).
14. It may not be amifs to obferve that in Fig. $44,45,46, E c-E q$, the difference of the Arithmetical and Harmonical mean temperaments of the $I 11^{d}$, computed for one octave is $\frac{1}{214}$, for two is $\frac{-1}{98}$, for three is $\frac{-1}{69}$ of a comma. Hence in 3 octaves the arithmetical and harmonical mean temperaments of the $\mathrm{v}^{\text {ths }}$ are as 76 to 77 very nearly, and if the bafes of any $v^{\text {th }}$ in each fyitem be unifons, their beats made in equal times are allo as 76 to $77(y)$: whence I judge that the harmony of the founds in the two fyfems can fcarce be fenfibly different (z). Neverthelefs it appears by the demonftration of the propofition, that an accurate folution of it required the help of Harmonical Means.
(t) Prop. III. (u) Scct. Iv. Art. 7.
(x) See Scholium. Prop. int. (y) Prop. xr. cor. 4.
(z) Prop. x1. fchol. 1. art. 4.

TAB.

HAR M O N I C S. Sect. VII.
TAB. II. PART I.

N°	Katios of the temperaments for equal harmony of the		
1	v and	vi as	$5: 2$
2	v	$3^{\text {d }}$	$5:$ I
3	$4^{\text {th }}$	VI	$5: 4$
	$4^{\text {th }}$	$3^{\text {d }}$	$5: 2$
4	v	III	Io : 3
5	V	$6^{\text {th }}$	20:3
1	$4^{\text {th }}$	III	$5: 3$
4	$4^{\text {th }}$	$6^{\text {th }}$	10: 3
6	VI	III	4:3
7	VI	$6^{\text {th }}$	8:3
1	$3^{\text {d }}$	III	$2: 3$
6	$3^{\text {d }}$	$6^{\text {th }}$	4:3
	In one	Octave	1 dozen
2	$v \quad$ and	VI +VIII	5 :
8	V	$3^{\text {d }}+$ vili	$10: 1$
I	$4^{\text {th }}$	$\mathrm{VI}+\mathrm{vili}$	$5: 2$
2	$4^{\text {th }}$	$3^{\text {d }}+$ virir	$5: 1$
1	v	III + VIII	$5: 3$
9	v	$6^{\text {th }}+$ vili	$40: 3$
10	$4^{\text {th }}$	III + vili	$5: 6$
5	$4^{\text {th }}$	$6^{\text {th }}+$ Vili	20:3
1	VI	HII + VIII	2:3
I I	VI	$6^{\text {th }}+$ Vili	16:3
12	$3^{\text {d }}$	IIr + Vili	I : 3
7	$3^{\text {d }}$	$6^{\text {th }}+$ VIII	$8: 3$

TABLE I. facing p. 143 . Contains the characters and terms of the perfect ratios of all the concords.

$\mathrm{I}^{\text {st }}$ Parcel.	$2{ }^{\text {d }}$ Parcel.	$3{ }^{\text {d }}$ Parcel.
$\begin{aligned} & \text { v. } \frac{2}{3} \\ & 4^{\text {th }} \cdot \frac{3}{4} \end{aligned}$	$\begin{array}{ll} \text { VI. } & \frac{3}{5} \\ 3^{d} \cdot & \frac{5}{6} \end{array}$	$\begin{aligned} & \text { III. } \frac{4}{5} \\ & 6^{\text {th }} \cdot \frac{5}{8} \end{aligned}$
$\left\|\begin{array}{l} v+\text { viII. } \frac{1}{3} \\ 4^{\text {th }}+\text { viII. } \end{array} \frac{3}{8}\right\|$	$\left\|\begin{array}{l} V I+V I I I \cdot \frac{3}{10} \\ 3^{\mathrm{d}}+\text { VIII. } \frac{5}{12} \end{array}\right\|$	$\left\lvert\, \begin{aligned} & \text { III }+ \text { viII. } \frac{2}{5} \\ & 6^{\text {th }}+\text { VIII. } \frac{5}{16} \end{aligned}\right.$
$\left\{\begin{array}{l} v+2 \text { VIII. } \\ 4^{\text {th }}+2 \text { VIII } \cdot \frac{3}{16} \end{array}\right.$	$\left\|\begin{array}{l} V I+2 v i I I \cdot \frac{3}{20} \\ 3^{d}+2 \text { VIII. } \frac{5}{24} \end{array}\right\|$	$\left\|\begin{array}{ll} \text { III }+2 \text { VIII. } & \frac{1}{5} \\ 6^{\text {th }}+2 \text { VIIII. } & \frac{5}{3^{2}} \end{array}\right\|$
$\left\|\begin{array}{l} \mathrm{v}+3 \mathrm{vIII} \cdot \frac{\mathrm{I}}{12} \\ 4^{\text {th }}+3 \mathrm{vinI} \cdot \frac{3}{32} \end{array}\right\|$	$\left.\left\|\begin{array}{l} V I+3 \text { VIII. } \end{array}\right\| \begin{aligned} & 40 \\ & 3^{\mathrm{d}}+3 \text { VIII. } \frac{5}{48} \end{aligned} \right\rvert\,$	$\left\|\begin{array}{l} 11 \mathrm{I}+3^{\text {VIIII }} \frac{1}{10} \\ 6^{\text {th }}+3^{\text {VIII. }} \frac{5}{64} \end{array}\right\|$
\&c.	\& c .	$\& \mathrm{c}$.
\&c.	\&c.	\&c.

Prop. XVI. H A R M O N IC S.
TAB. II. PART II.

N°	Reciprocals of the temperaments of the $\mathrm{v}, 4^{\text {th }}$ \& Comp. \| vi. $3^{\text {d } \& ~ C o m p . ~ \mid ~} 111,6$ th $\&$ Comp.		
I	3.40000	8.50000	5.66667
2	3.20000	16.00000	4.00000
3	3.80000	4.75000	19.00000
I	$3 \cdot 4.0000$	8.50000	5.66667
4	$3 \cdot 70000$	5.28571	12.33333
5	3.85000	$4 \cdot 52941$	25.66667
1	3.40000	8.50000	5.66667
4	$3 \cdot 70000$	5.28571	12.33333
6	$3 \cdot 57143$	6.25000	8.33333
7	$3 \cdot 72727$	5.12500	13.66667
6	3.40000	8.50000	5.66667
6	$3 \cdot 57143$	6.25000	8.33333
Sums	42.72013	$87.475^{8} 3$	126.33334
2	3.20000	16.00000	4.00000
δ	3. 10000	31.00000	3. 44444
I	3.40000	8.50000	5.66667
2	3.20000	16.00000	4.00000
I	$3 \cdot 40000$	8. 50000	5.66667
9	3.92500	4. 24324	52.33333
10	$5 \cdot 20000$	2. 36364	$\overline{5} .66667$
5	3.85000	4. 5294 I	25.66667
1	3.40000	8.50000	5.66667
II	3.84211	4.56250	24.33333
12	3.25000	13.00000	4.33333
7	$3 \cdot 7272.7$	5.12500	I 3.66667
Sums	$43 \cdot 49438$	122.32379	144.44445

144 HARMONICS. Sect. VIf:

TAB. II. PART I.

N°	Ratios of the temperaments for equal harmony of the		
2	$\mathrm{v}+\mathrm{viII}$	vI	$5:$
8	v + viri	$3^{\text {d }}$	IO: I
I 3	$4^{\text {th }}+$ VIII	VI	$5: 8$
3	$4^{\text {th }}+$ vili	$3^{\text {d }}$	$5: 4$
5	$\mathrm{v}+\mathrm{vin}$	III	20: 3
9	$\mathrm{v}+\mathrm{viri}$	$6{ }^{\text {th }}$	40:3
10	$4^{\text {th }}+$ VIII	III	$5: 6$
I	$4^{\text {th }}+$ VIII	$0^{\text {th }}$	$5: 3$
1	vi +ViII	III	2 : 3
6	vi + viri	$6^{\text {th }}$	4:3
12	$3^{\text {d }}+$ VIII	III	$1: 3$
1	$3^{\text {d }}+$ VIII	$6^{\text {th }}$	$2: 3$
			3 dozen
8	v + viil	VI + VIII	10 : 1
14	$\mathrm{v}+\mathrm{viII}$	$3^{\text {d }}+$ vil1	20: 1
3	$4^{\text {th }}+$ VIII	VI + VIII	5: 4
	$4^{\text {ch }}+$ VIII	$3^{\text {d }}+\mathrm{vin}$	4: 2
4	$\mathrm{v}+\mathrm{VIII}$	III + VIII	10: 3
I 5	v + VIII	$\delta^{\text {ch }}+$ VIII	$80: 3$
16	$4^{\text {th }}+$ VIII	III + vili	$5: 12$
4	$4^{\text {th }}+$ VIII	$6^{\text {h }}+$ vilir	10: 3
12	vi + vili	III + VIII	: 3
7	vi + viII	$6^{\text {ch }}+$ Vili	8 : 3
17	$3^{\text {d }}+$ vili	$\underline{1 I}+$ Vin	I : 6
6	$3^{3^{d}+\text { vili }}$	$\sigma^{\text {th }}+$ vili	$4: 3$
	In two	Octaves	4 dozen

TAB. II. PART II.

N°	Reciprocals of the temperaments of the $\mathrm{v}, 4^{\text {th } \& ~ C o m p . \mid ~ v i, ~} 3 \mathrm{~d}$ \& Comp. \| III, 6th \& Comp.		
2		16.00000	
8		31.00000	
13		2.87500	333
3	3.80000	4.75000	19.00006
5			
9	3.	4.	52
10	5.20000	2. 36364	
1	3.40000	8. 50000	5.66667
I			
6	3. 57143	6.	8.33333
12	3.25000	13.00000	4.33333
1	3.40000	8. 50000	
Sums	44	110.51129	1.22
8			
14	3.05000	61.00000	
3	3.80000	4.75000	
I	3.40000	8.50000	
4		$5 \cdot 28571$	
I 5	3.96250	4. 11688	5.66667
16	6.40000	I. 88235	$\overline{3} \cdot 33333$
4	$3 \cdot 7$	5.2857 I	
12	3.25	13.00000	
7		5.1	3.60607
17	3. 14286	22.00000	
6	$3 \cdot 57143$	6.25000	
Sums	44.8040	. 195	8.98830

K

IIARMONICS. Sect. VII.
tab. II. PARTI.

No	Ratios of the temperaments for equal harmony of the		
8	v	$\mathrm{VI}+2 \mathrm{VIII}$	10
14	\checkmark	$3^{\text {d }}+2 \mathrm{VIII}$	20
	$4^{\text {th }}$	vi $+2 \mathrm{vil1}$	5
8	$4^{\text {th }}$	$3^{\text {d }}+2 \mathrm{VIII}$	10
10	v	III +2 VIII	
15	\checkmark	$6^{\text {th }}+2 \mathrm{VIII}$	80
16	$4^{\text {th }}$	$111+2 \mathrm{VIII}$	5: 12
9	$4^{\text {th }}$	$6^{\text {th }}+2 \mathrm{VIII}$	40
12	vi	:1I+2VIII	1 :
18	vi	$6^{\text {th }}+2 \mathrm{VIII}$	32
17	$3^{\text {d }}$	$101+2011$	1
1 I		6tar +2 V 111	16
			5 dozen
14	+V1II	$\mathrm{VI}+2 \mathrm{mH}$	20:
19	$\mathrm{v}+\mathrm{vili}$	$3^{\text {d }}+2 \mathrm{VII1}$	40
1	$4^{\text {th }}+\mathrm{vili}$	$\mathrm{vi}+2 \mathrm{VIII}$	5 :
2	$4^{\text {th }}+$ vili	$3^{\text {d }}+2 \mathrm{vmin}$	
1	$\mathrm{v}+\mathrm{v} 111$	H1 +2V111	
20	v +viri	$6^{\text {th }}+2 \mathrm{VIII}$	160:
21	$4^{\text {th }}+$ vili	III +2 ViHI	5: 24
5	$4^{\text {th }}+\mathrm{vili}$	$6^{\text {th }}+2 \mathrm{Vin}$	20: 3
17	vi + vini	$111+2 \mathrm{VIII}^{\text {a }}$	1 : 6
11	$\mathrm{vi}+\mathrm{vin}$	$6^{\text {th }}+2 \mathrm{VIII}$	16 :
22	$3^{\text {d }}$ +-vili	$111+2 \mathrm{VIII}$	$1: 12$
7	$3^{\text {d }}+\mathrm{VIII}$	$6^{\text {bla }}+2 \mathrm{VIII}$	8: 3
			6 dozen

Prop. XVI. HARMONICS.
TAB. II. PART II.

N°	Reciprocals of the temperaments of the v, 4 th \& Comp. $\\|_{\text {vi, }} 3^{\text {d \& C Comp. } 1111,6 \text { th \& Cómp }}$		
8	3.10000	3 I .00000	
14	3.05000	61.00000	
2	3.	16.00000	0
8	3.10000	3 1.00000	44
10	5.		
15	3.	4. 11688	105.66667
16			3. 33333
9	92		52.33333
12			
18	3.91429	4.28125	45.66667
17	3.14286	22.00000	3.66667
1 I	, 8121 l		
Su	46.08	195.44986	243.09941
19	3.02500	121.00000	
I		8. 50000	
2	3.20000	16.000	4.00.000
1			5.66667
20		4.05732	212.33333
21	8.8		2. 16667
5	3.8	4. 52011	25.66667
17		22.	
1	3.8		24.33333
22	3.07692	40.0000	3. 33333
7	$3 \cdot 72727$	5.12500	13.66667
Sum	46.4	96.7	

K 2

HARMONICS. Sect. VII.
TAB. II. PARTI.

N°	Ratios of the temperaments for equal harmony of the		
1	$\mathrm{v}+2 \mathrm{VIII}$	vi	$5: 2$
2	$\mathrm{v}+2 \mathrm{VIII}$	$3^{\text {d }}$	$5: \mathrm{I}$
23	$4^{\text {th }}+2 \mathrm{VIII}$	VI	$5: 16$
I 3	$4^{\text {th }}+2 \mathrm{VIII}$	$3^{\text {d }}$	$5: 8$
4	$v+2 \mathrm{VIII}$	III	10: 3
5	$v+2 \mathrm{VIII}$	$6^{\text {th }}$	20:3
16	$4^{\text {th }}+2 \mathrm{VIII}$	111	$5: 12$
10	$4^{\text {th }}+2$ VIII	$6^{\text {ch }}$	$5: 6$
12	vi + 2vini	III	1 : 3
1	VI +2vili	$6^{\text {th }}$	$2: 3$
17	$3^{\text {d }}+2$ VIII	III	I : 6
12	$3^{\text {d }}+2$ VIII	$6^{\text {ch }}$	I : 3
			7 dozen
2	$\mathrm{v}+2 \mathrm{V1II}$	vi +Vili	$5: 1$
8	$\mathrm{v}+2 \mathrm{vili}$	$3^{\text {d }}+$ vili	$10: 1$
13	$4^{\text {th }}+2$ VIII	vi + vili	$5: 8$
3	$4^{\text {th }}+2 \mathrm{VIII}$	$3^{\text {d }}+\mathrm{vini}$	$5: 4$
I	$\mathrm{v}+2 \mathrm{VIII}$	$11 i+2 i n$	$5: 3$
9	$v+2 \mathrm{VIII}$	$6^{\text {th }}+$ vili	40: 3
21	$4^{\text {th }}+2$ VIII	ini + Vini	$5: 24$
I	$4^{\text {th }}+2 \mathrm{VlII}$	$6^{\text {ch }}+$ vili	$5: 3$
17	$\mathrm{VI}+2 \mathrm{VIII}$	$\mathrm{HI}+\mathrm{VIII}$	I : 6
6	$\mathrm{VI}+2 \mathrm{VIII}$	$6^{\text {th }}+$ vilis	4: 3
22	$3^{\text {d }}+2 \mathrm{VIII}$	ili + Vini	1 : 12
1	$3^{\text {d }}+2 \mathrm{VIII}$	$6^{\text {ch }}+$ VIII	$2: 3$
			8 dozen

TAB. II. PART II.

N	Reciprocals of the temperaments of the 		
1	3.40000	8.50000	67
2	3.20000	16.00000	0
23	6.20000	1.9375°	3. 18182
13	4.60000	2.87500	$\overline{8} \cdot 33333$
4		5.28571	12.33333
5	3.85000	4. 5294 I	
16	6.40000	I. 88235	
10	5.200	2. $3^{6} 364$	
I 2	$3 \cdot 25000$	${ }^{1} 3.00000$	3
1	3.40	8.50000	
17		22.00000	
12	3.2	13.00000	33
Sums	49.5		82
2	3.20000	10.00000	
8	3.10000	3 I .00000	3.44444
${ }^{1} 3$	4.60000		$\overline{3} \cdot 33333$
3	3.80000	4.75000	19.00000
1			
9		4.2	52.33333
2 I	8.8000	I. 51724	2. 16667
1	3.400	8. 50000	5.66667
17	3.	22.	
6	3.57143	6.25000	8. 33333
22	3.07692	40.00000	3333
1	3.40000	8. 50000	5.06667
Sum	$47.4: 62 \mathrm{I}$	4. 1354	1. 6111 I

K 3

TAB. II. PART I.

TAB. III.

facing p. 150.

facing p. 150 .

TAB. II. PART II.

N°	Reciprocals of the temperaments of the 		
8	3.10000	3	
14	3.05000	61	3.
3	3.		19.00000
I	3.	.	
10	$5 \cdot 20000$		
15	3.96250	4. 11688	105.66067
24	13.60000	I. 28302	
4	3.70000	5.28571	12.
22	3.	40.00000	
7	$3 \cdot 72727$		3.66667
25	3.04000	76.00000	
6	3. 57143	6.25000	8.3

TAB. III.

------ reciprocals of the temperaments	
vi, $3^{\text {d }}$ \& Comp.	n11, bth ix Comp.
$87.475^{8} 3$	126.33334
122.32379	144.44445
110.51129	122.1111I
168.19565	188.98830
488.50656	581.87720
195.44986	243.09941
296.79147	302.81310
99.87361	48.18182
${ }^{1} 54.13548$	ioi.6IIII
245.67425	172.07164
1480.43123	1449.65428

${ }_{5} 52$ HARMONICS. Sect.VII.
TAB. VI.
The valies of Eq and Eq' in Fig. 45 and 46, -wards the temperament of the $111^{\text {d }}$, for-.. equally and the moft barmonious.

In I Octave.
(a) $\begin{aligned} \frac{12}{42.7^{2013}} & =0.2808980=G D=d \\ \frac{12}{87.475^{83}} & =0.1371808=A H=b \\ \frac{12}{126.33333} & =0.0949868=E M=m\end{aligned}$

In 2 Octaves.
$\frac{48}{175.71500}=0.2731696=G D=d$ $\frac{4^{8}}{488.5065^{6}}=0.09825^{8} 7=A H=b$ $\frac{48}{581.87720}=0.0824916=E M=m$

In 3 Octaves.
$\frac{108}{48.5343^{6}}=0.2580433=G D=d$
$\frac{108}{1430.43123}=0.0729517=A H=b$
$\frac{108}{1449.65428}=0.0745005=E M=m$
(a) Sce thc laft Table.

Prop. XVI. HARMONICS.
TAB. VI.
---being the first and Second approximations to-
-- making all the concords in $\mathrm{I}, 2$ or 3 octaves
Hence
$E f=4 d-\mathrm{I}=0.1235920$
$E i=\frac{\mathrm{I}-4 b}{3}=0 .{ }_{\mathrm{I}}^{5} 504256$
$E M=m=0.0949868$
3) 0.3690044
$E q=0.1230015$
$E q^{\prime}=0.122233$. in 1 Octave,
$E f=4 d-\mathrm{I}=0.0926784^{\text {See Tab. viI. }}$
$E i=\frac{1-4 b}{3}=0.2023217$
$E M=m=0.0824916$

$$
\begin{aligned}
& \quad 3) \overline{0.3774917} \\
& E q q=0.125^{8} 306 \\
& E q^{\prime}=0.1247^{1} 9 . \text { in } 2 \text { Octaves. }
\end{aligned}
$$

$E f=4 d-\mathrm{I}=0.032173^{2}$
$E i=\frac{1-4 b}{3}=0.2_{3} 60634$
$E m=m=0.074 .5005$

$$
\text { 3) } 0.3427371
$$

$E q=0.1142457$
$E q^{\prime}=0.11024 \ldots$ in 3 Octaves.

TAB. VII.
The computation of Eq^{\prime} in Fig. 46, being the --ment of the $11 \mathrm{I}^{\mathrm{d}}$, for making all the concords ---

$$
\begin{array}{r}
\frac{1}{G D}=\frac{1}{d}=\frac{42.72013}{12}=3.560011 \\
\frac{1}{G g}=\frac{3}{1-b}=\frac{3}{0.8628192}=3.476974 \\
\frac{1}{G k}=\frac{4}{1+m}=\frac{4}{1.0949868}=\frac{3.652913}{10.689898} \\
\text { Arith. mean } 3.563299
\end{array}
$$

$$
\begin{array}{r}
\frac{1}{A H}=\frac{1}{b}=\frac{87.47583}{12}=7.289653 \\
\frac{1}{A e}=\frac{1}{1-3 d}=\frac{1}{0.1573060}=6.35703 \mathrm{I} \\
\frac{1}{A l}=\frac{4}{1-3^{m}}=\frac{4}{0.7150396}=\frac{5.494096}{19.240780} \\
\text { Arith. mean } 6.413593 \\
A H^{\prime}=b^{\prime}=\frac{1}{6.413593}=0.155919
\end{array}
$$

Prop. XVI. HARMONICS.

TAB. VII.
--- Second approximation towards the tempera-
--- in I octave equally and the molt harmonious.

$$
\begin{array}{r}
\frac{\mathrm{I}}{E M}=\frac{\mathrm{r}}{m}=\frac{126.33333}{12}=10.527777 \\
\frac{1}{E f}=\frac{\mathrm{I}}{4 d-1}=\frac{1}{0.1235920}=8.091138 \\
\frac{1}{E i}=\frac{3}{1-4 b}=\frac{3}{0.4512768}=\frac{6.647805}{35.266720} \\
\text { Frith. mean } 8.422240 \\
E M^{\prime}=m^{\prime}=\frac{1}{8.422240}=0.118733
\end{array}
$$

Hence $E f^{\prime}=4 d^{\prime}-\mathrm{I}=0.122524$

$$
\begin{array}{r}
E i^{\prime}=\frac{1-4 b^{\prime}}{3}=0.12544 \mathrm{I} \\
E m^{\prime}=m i^{\prime}=\frac{0.118733}{0.366698} \\
3) \\
E q^{\prime}=0.122233
\end{array}
$$

See the values of $E q^{\prime}$ in 2 and 3 octaves in Tab. vi, part $2^{\text {d }}$.

PRO.

PROPOSITION XVII.

A.jfem of commenfurable intervals deduced from dividing the octave into 50 equal parts, and taking the limma $L=5$ of them, the tone $T=8$ and confequently the leffer $3^{\mathrm{d}} L+\mathcal{T}$ $=13$, the greater $11^{\mathrm{d}} 2 \mathcal{T}=16$, the $4^{\text {th }} L+2 T=21$, the $v^{\text {th }} L+3 T$ $=29$, $\mathfrak{O} c$, according to the table of elements (a), will differ infenfibly from the fyftem of equal barmony: I mean with regard to the barmony of the refpective confonances in both.

For fince $\mathrm{L}=5, \mathrm{~T}=8$ and the $\mathrm{mI}^{\mathrm{d}}{ }_{2} \mathrm{~T}$ $=16$ and the $v_{11 I}=5 \mathrm{~T}+2 \mathrm{~L}=50$, we have the $1 I^{d} 2 \mathrm{~T}:$ vili $:: 8: 25$; whence the $11 I^{\text {d }}$ $2 \mathrm{~T}=\frac{8}{25} \mathrm{v}_{111}=\frac{8}{25} \log .2=\frac{8}{25} \times 0.30102$. $99957=0.09632 .95962$, which fubtracted from the perfect $111^{d}=\log \cdot \frac{4}{5}=0.09691$. 00130 , leaves the temperament 0.00058 .04168 , which is to the comma $c=\log$. $\frac{81}{80}=0.00539$. 50319 as 4 to 37 very nearly (b). Hence the tem-
(a) Prop.ini.
(b) Sec an example of the like reduction in the next Scrulium.

Prop. XVII. H A R M O N I C S. 157 temperament of the $1 I^{\mathrm{d}}$ is $-\frac{4}{37} c$, and thofe of the $\mathrm{v}^{\text {th }}$ and $\mathrm{vI}^{\text {th }}$ as in Tab. I, by prop. in. cor. I. 2.3 .

TABLE I.

Now though the concords of the fame name in this fyftem and that of equal harmony are not exactly equally harmonious (d), and though the difference of an unit in the largeft number of beats made in a given time may be diftinguifhed by counting them; yet if the numbers be not fmaller than thofe in the table, the difference in the harmony of the concords will be dcemed infenfible by proper judges; which are thofe only that have carefully attended to the beats of concords in tuning inftruments. But any one elfe may be fatisfied experimentally, by cauting
(c) Prop. xi. coroll. 4.
(d) Prop. xini coroll. 5 .
caufing two concords to the fame bafe to beat as in the table. Q.E. D.

Scholium.

In like manner if $\mathrm{T}=5$ and $\mathrm{L}=3$, then the octave $5 \mathrm{~T}+2 \mathrm{~L}$ is $=3 \mathrm{I}$ and the temperament of this fyftem, which Hugenius has adopted (e), will be found as in the third column of the next table.

TABLE II.

$\left\lvert\, \begin{gathered} \text { T:L: }: 2: I \\ \text { VIII }=1 Z \end{gathered}\right.$	$\begin{gathered} \mathrm{T}: \mathrm{L}:: 3: 2 \\ \mathrm{vill}=19 \end{gathered}$	$\begin{gathered} \mathrm{T}: \mathrm{L}:: 5: 3 \\ \text { VIII }=3 \mathrm{I} \end{gathered}$
$\mathrm{v}-\frac{1}{4} c+\frac{3}{19} c$	$\mathrm{v}-\frac{\mathrm{r}}{4} c-\frac{3}{35} c$	$\mathrm{v}-\frac{\mathrm{r}}{4} c+\frac{\mathrm{I}}{110} c$
$\mathrm{vi}+\frac{\mathrm{I}}{4} c+\frac{9}{19} c$	$\mathrm{VI}+\frac{\mathrm{I}}{4} c-\frac{9}{35} c$	$\mathrm{VI}+\frac{\mathrm{I}}{4} c+\frac{3}{110} c$
III $\left.\quad+\frac{12}{19} c \right\rvert\,$	III $-\frac{12}{35} c$	$\mathrm{III}+\frac{4}{110} c$

On the contrary, if from the given temperament of a fyftem it be required to find the ratio of T to L , we may proceed as follows. Let it be propofed to approximate to the fyftem of equal harmony, where $2 \mathrm{~T}=\mathrm{III}-\frac{1}{9} c(f)$; then
(e) Cyclus harmonicus, at the end of his Works, or Hiftuire des Ouvrages des Sçavans, Octob. 1691, pag. 78.
(f) Prop. xvi. Scholium 2, Art. 9.

Prop. XVII. H A R M O N I C S.
then fince $5 \mathrm{~T}+2 \mathrm{~L}=\mathrm{vin}$, we have $2 \mathrm{~L}=$ $($ vili $-5 \mathrm{~T}=)$ vili $-\frac{5}{2} \overline{\times I I I-\frac{1}{9}} c$, whence $\mathrm{T}: \mathrm{L}:: \mathrm{III}-\frac{1}{9} c: \mathrm{VIII}-\frac{5}{2} \times \overline{\mathrm{III}-\frac{1}{9}} c$.

To find this ratio, we have the $111=\log \cdot \frac{5}{4}$ $=0.09691 .00130$ and the comma $c=\log \cdot \frac{84}{80}$ $=0.00539 .50319$ and $\frac{1}{9} c=0.00059 .94480$. Whence $2 \mathrm{~T}=111-\frac{1}{9} c=0.0963 \mathrm{I} .05650$ and $\frac{5}{2} \times \overline{\text { III }-\frac{1}{9} c}=0.24077 .64125$ and the $\mathrm{vill}=\log .2=0.30102 .99957$ and $2 \mathrm{~L}=$ viII $-\frac{5}{2} \times$ III $-\frac{1}{9} c=0.06025 .35832$, and lafty T:L::963105650:602535832.

Now the quotients of the greater term of this ratio divided by the leffer and of the leffer divided by the remainder and of the former remainder by the latter \&c, are I, I, I, 2, 24, \&c. Whence the ratios greater than the true one are 2 to 1,5 to 3,8 to $5,8 \mathrm{cc}$, and the leffer are 3 to 2,1 to $7,8 \mathrm{Ec}(\mathrm{g})$.

Hence taking T to L fucceffively in thofe ratios, by the method ufed in the demonftration of the propofition, the temperaments of the approximating rational fyftems will be found as in the tables. By which we fee how much and which
(g) Sce Mr. Cette's Harmonia Menfurarum, Schol. 3. prop. I. as well as from that of equal harmony in Table I.

SECTION VIII.

The fcale of mufical founds is fully explained and made changeable upon the barpfichord, in order to play all the flat and Sbarp founds, that are ufed in any piece of mufic, upon no other keys than thofe in common ufe.

DEFINITIONS.

I. The interval of a perfect octave being divided, in any tempered fyftem, into 5 equal tones and 2 equal limmas (b), the excefs of the tone above the limma is called a Minor limma.
II. The difference of the major and minor limma is called a Diefis.
III. If the difference of the intervals of two conifonances to the fame bafe be a diefis, I hall call either of them a Falfe confonance when ever, in playing on the organ or harpfichord, it is fubfituted for the other which ought to be ufed; as it often is for want of a complete fcale of founds in thofe inftruments.
IV. The notes $A^{*}, B^{*}, \& c$, fignify founds which are fharper, and $A^{b}, B^{b}, \& c$, founds which
(3) See fect. iv art. 3, or the dem. of prop. 2, or prop. 3 .
which are flatter by a minor limma than the reIpective primary founds' $A, B, 8 \pm \mathrm{c}$: And $A^{* *}$, $A^{b b}, \& x c$, fignify founds whofe diftance from A is double the diftance of A^{*} or A^{b} from A and alike fituated.
I. Pl. xviri. Fig. 48 or 49 . The interval of a perfect octave being reprefented by the circumference of any circle (i) and fuppofed to be divided by the founds A, B, C, D, E, F, G into 5 tones and 2 limmas, towards the acuter founds take the interval $A A *$ equal to the minor limma $A B-B C$, and towards the graver take $A A^{b}$ equal to $A A^{*}$, and when the like flat and fharp founds are placed at that diffance on each fide of the other primary founds B, C, D, E, F, G, every tone will be divided by a flat or a fharp found into a major and a minor limma, and by both into two minor limmas with a diefis between them ; and each primary limma, $B C, E F$, will be divided by a flat or a harp found into a minor limma and a diefis, and by both into two diefes with an interval between them.
2. Fig. 48. In the Hugciain fyftem the octave is divided into 31 equal parts, of which the tone is 5 , the major limma 3, the minor 2 and the diefis I (k).

Fig. 49. In the fyttem of Equal Harmony the octave is divided into 50 equal parts, of which the tone is 8 , the major limma 5 , the minor 3 and the diefis $2(l)$.

Therefore the former tone is to the latter as
L.

[^14]$\frac{5}{31}$ vili to $\frac{8}{50}$ vili, or as 125 to I24, and the former diefis is to the latter as $\frac{1}{3 \mathrm{I}}$ to $\frac{2}{50}$, or 25 to 3 I ; and fince a quarter of a comma is about $\frac{1}{223}$ viII (m) the former diefis $\frac{1}{3 \mathrm{I}}$ vili contains above $\frac{7}{4}$, and the latter almoft $\frac{9}{4}$ of a comma.
3. Fig. 48 or 49 . In either of thofe fyftems or any other of that kind, by going many times round the circle it will appear, that in afcending from F continually by $\mathrm{v}^{\text {ths }}$ the 7 primary notes will firft occur in this order $F C G D A E B$, and then recur once fharpened in the fame order, and again twice fhapened \&c: Likewife in defcending from F by $\mathrm{v}^{\text {ths }}$, they will recur once flattened in that order thus inverted, $B^{b} E^{b} A^{b} D^{b} G^{b} C^{b} F^{b}$, and again twice flattened \&oc : And thefe feveral cyclesjoined together make the following progreffion afcending by vth; $E^{b b} B^{b b}, F^{b} C^{b} G^{b} D^{b}$ $A^{b} E^{b} B^{b}, F C G D A E B, F^{*} C^{*} G^{*} D^{*}$ $A^{*} E^{*} B^{*}, F^{*}{ }^{*} C^{* *} \& c$.
4. Hence a Table of the minor and major confonances to any number of Keys or bafe notes in that progreffion placed in the firft column (n), is thus deduced. Oppofite to any Key as D write the 12 trebles $E^{b}, E, F, F^{*}, \& c$ of the minor and major confonances within the vini in the order of their marks, $2^{\text {d }}, 11^{\mathrm{d}}, 3^{\mathrm{d}}, 111^{\mathrm{d}}$, \&c at the top of the table, which trebles are found by going round the circle; then place the fame progreffion of $\mathrm{v}^{\text {ths }}$ above
(m) Found by dividing the log. of 2 by $\frac{1}{4} \log \cdot \frac{31}{80}$.
(n) Plate xix.
above and below the treble E^{b} in col. 2, as ftands above and below E^{b} in col. I; and having done the like to the other trebles $E, F, \&=$ c, the table is finifhed.

For fince the interval $D A$ in col. I is equal to $E^{b} B^{b}$ in col. 2, it follows that in col. I and 2 the interval $A B^{b}$ equals $D E^{b}$; and the fame may be faid of the reft of the table. At the bottom of it the letters L, l, D fignify the major and minor limma and the diefis, as being the differences of the intervals marked at the top.
5. As the organ or harpficord has but i2 founds in the octave, whofe notes are F, C, G, D, A, E, B, with F^{*}, C^{*}, G^{*}, above, and E^{b}, B^{b}, below them in col. I; all the notes below E^{b} in col. I and in thofe of the minor confonances, and all above $G *$ in col. I and in thofe of the major confonances have no founds anfwering to them in thofe inftruments; and are therefore excluded, or diftinguifhed from the notes that have founds, by circles round them, both in the table and in Fig. 48 and 49.

Confequently when any of the excluded notes $D^{*}, A^{*}, E^{*}, B^{*}, F^{*} \times, C^{*}$, that are above G^{*}, occur in a piece of mufic, as mon of them often do, the mufician is obliged to fubflitute for them the founds of E^{b}, B^{b}, F, C, G, D, refpectively, which being higher by a diefis (0) make falfe confonances (p).

$$
\mathrm{L}_{2} \quad \text { Likewife }
$$

(0) As appears by Fig. 48, or by the collateral notes in the columins of in the and $5^{\text {ths }}$ in the table of confonances.
(f) Dif. ilf.

Likewife when any of the excluded notes $A^{b}, D^{b}, G^{b}, C^{b}, F^{b}, B^{b b}$, that are below E^{b}, occur, as fome of them often do, the mufician muft fubflitute for them $G^{\star}, C^{*}, F^{*}, B, E, A$, refpectively, which being lower by a diefis make falie conionances.

Hence the two middlemof Keys D, A have one falle confonance in each, and the numbers of them in the fucceffive higher or lower Keys, increafe in the arithmetical progreffion $2,3,4,5,6$. Whence it is eafy to collect that feven twentyfourths of the whole number of major and minor confonances in the fcale of the organ or harpfichord, are falfe; befides a larger proportion of falfe ones among the Superfluous and Diminifhed confonances hereafter mentioned.
6. The confonances to all the Keys above E have no flat notes; becaufe B^{6} is the higheft flat note in every column of minor confonances, and is the higheft of all where it is the minor $5^{\text {th }}$ to the Key E. Again, the confonances to all the kevs below C have no tharp notes; becaufe F^{*} is the loweft fharp note in every column of major confonances, and is the lowett of all where it is the major $1 \mathrm{v}^{\text {th }}$ to the Key C. Therefore the confonances to thofe two and the intermediate Keys, $C G D A E$, have both flat and fharp notes among them.

Hence it comes to pafs that the concords (q) to the 4 middlemof keys G, D, A, E, which are the
(q) Sect. ins. art. $11^{\text {th }}$.
the open ftrings of the violin, are all true, but not all the difcords.
7. By adding a found for $A b$, every one of the 6 lower keys E^{b}, B^{b}, F, C, G, D, will have one falfe confonance changed into a true one, as appears by infpection of the oblique diagonal rows of A^{b} in the table. Likewiie by adding another found for D^{*} every one of the 6 higher keys $A, E, B, F^{*}, C^{*}, G^{*}$, will have one falle confonance changed into a true one. Now in this inlarged fcale of 14 keys all the confonances to D and A, the two middlemof, are true. And a like advantage will follow from giving founds to D^{b} and A^{*}, the two next exterior keys, and fo forth.

Therefore univerfally, the number of the middlemoft keys to which all the minor and major confonances are true, is equal to the whole number of keys or founds in the octave diminifhed by 12 ; fo that the 24 founds in col. I. would be neceffary to make all thefe confonances true in the 12 middlemoft keys.
8. But befides the major and minor confonances in the Table there are others in the fcale of Fig. 48 or 49 , which I think are called Sitperfluous and Diminifhed confonances.

The interval of a major confonance augmented by a minor limma makes the interval of a fuperfluous confonance; and the interval of a minor conforrance diminifhed by a minor limma makes the interval of a diminifhed comfonance.

Thus the treble of a fuperfluous $I^{d}, 1 I^{\text {d }}, 1 v^{\text {th }}$, $\mathrm{v}^{\mathrm{th}}, \mathrm{vi}^{\text {th }}, \mathrm{vit}^{\text {th }}, \& \mathrm{c}$ to the key F, is G^{*}, A^{*}, $B^{*}, C^{*}, D^{*}, E^{*}$, refpectively; and the treble of the diminifhed $2^{\text {d }}, 3^{\mathrm{d}}, 4^{\text {th }}, 5^{\text {th }}, 6^{\text {th }}, 7^{\text {th }}, 8 \mathrm{Ec}$ to the key B, is $C^{b}, D^{b}, E^{b}, F^{b}, G^{b}, A^{b}$. And the like is to be underftood in the other keys, where the trebles are often double fharp and double flat founds; but are all omitted in the Table to avoid confufion by adding fo many notes to it.
9. I have heard of but one method of fupplying the organ or harpfichord with more founds in each octave; which is by adding pipes or ftrings for $A^{b}, D^{b}, \& c$, and dividing the keys of their fubflitutes $G^{*}, C^{*}, \& \tau c$, each into two keys, the longer of them for founding $G *, C^{*}$, Ecc as ufual, and the fhorter for founding A^{b}, D^{b}, \&cc: and by doing the like for $D^{*}, A^{*}, \& c c$. But this method of fupplying the defects of the fcale is quite laid afide, on account of the great difficulty in playing upon fo many keys without extraordinary practice, and the following palliative remedy is univerfally received.

Pl. xviri. Fig. 48 or 49. The octave being always divided into 5 tones and two limmas; by increafing the tones equally till each becomes double the dimininhing limma $B C$ or $E F$, the diefis, or difference between the major and minor limma, will be contracted to nothing, which by Defin. III annihilates all the falfe confonances. But the harmony in this fyftem of 12 Hemitones is extremely coarfe and difagreeable.

For

Prop. XVII. HARMONICS. 167
For the temperaments of the $\mathrm{v}^{\text {th }}$ and $4^{\text {th }}$, $\mathrm{v}^{\text {th }}$ and $3^{\text {d }}, 11^{\text {d }}$ and $6^{\text {th }}$ and their compounds with vint ${ }^{\text {ths }}$, are nearly $\frac{1}{10}, \frac{7}{10}$ and $\frac{6}{10}$ of a comma refpectively (r) and in the fytem of equal harmony they are $\frac{5}{18}, \frac{1}{6}$ and $\frac{1}{9}(s)$; by which fyttem, as being the mof harmonious, all other fyftems ought to be examined, as by a ftandard. Now $\frac{1}{10}$ being much lefs than $\frac{5}{18}$, makes the concords in the firt parcel (t) finer than they ought to be; and $\frac{7}{10}$ and $\frac{6}{10}$ being much greater than $\frac{1}{6}$ and $\frac{1}{9}$, make the concords in the other two parcels much coarfer than they ought to be, the two leaft of thofe temperaments being as great as thofe concords can properly bear.

Now for want of another found to terminate each diefis in the fcale, it is neceflary in the tuning to diminifh the diefis till one found may ferve tolerably for the other, and thus to approach towards that inharmonious fyftem of 12 hemitones, till the harmony of the fcale becomes very coarfe before the falfe confonances are barely tolerable (u).
L_{4} 9. That
(r) Prop. xvir. Tab. II ${ }^{\text {d }}$. col. .
(s) Prop. xvi. fchol. 2. art. 10 and 13.
(t) Prop. III. fchol.
(u) This is done by fharpening the major $1 I^{\text {ds }}$ more than the ear can well bear, which inlarges the tones and lefiens the major limmas and diefes: or, becaufe any 6 tones or 3 major inds and a diefis (as $A b C+C E+$ $\left.E G{ }^{*}+G{ }^{*} A^{b}\right)$ make up the ochave or circumference in Fig. 48.
9. That this is a bad expedient for fupplying the want of more founds, is farther evident from the Hugenian fyftem, wher: the temperament common to the $\mathrm{vI}^{\text {th }}$ and $3^{\text {d }}, 8 \mathrm{c}$ being $\frac{1}{4}+\frac{3}{110}$ of a comma (x) is confiderably greater than it ought to be, that is, than $\frac{1}{6}$ of a comma, as in the fyftem of equal harmony; and yet the Hu genian diefis is $\frac{7}{4}$ of a comma (y), which being confidered as a temperament of the falfe confonances and being fo much greater than $\frac{1}{4}+\frac{3}{110}$ of a comma muft needs make horrible diffonance.
10. Having therefore been long diffatisfied with the coarfenefs of the harmony even of the true confonances in the fcale of our prefent infuruments, which is fo defective too that not above a feventh or eighth part of the beft compofitions made fince Corelli's time, nor above a third or fourth of his can be played upon it without ufing many falfe confonances; and being ftill more difgufted when thefe come into play, as they often do in the remaining two thirds or three fourths of Corclli's works, and fix fevenths or feven eighths of all the reft; I was glad to find out a betier remedy for both thofe defects; at leaft in a fcale of fingle founds.

I I. The ftrings of the fore unifon of the harpfichord being tuned as ufual to the notes of the common feale in the following lower line, let the founds
(x) Prop. Xvin. Tab. 2. col. 3.
(y) Sect. Vitit art. 2.
founds of the back unifon be altered to the notes in the upper line, each of which differs from the note under it by a diefis (z).
$A^{b} B^{b b} A^{*} C^{b} B^{*} D^{b} C^{* *} D^{*} F^{b} E^{*} G^{b} F^{*}{ }^{*}$

Now fince the jacks which ftrike the frings of any of thefe couples of notes, as G^{*} and A^{b}, ftand both upon one key, by moving a ftop hereafter defcribed, that key can ftrike either ftring alone without founding the other: And fince both the founds in any couple are feldom or never ufed in any fingle piece of mufic, the mufician before he begins to play it, can put in, by the ftop, that found which he fees moft occafion for; and either of them being fruck by the fame key, the execution is always the fame as ufual.
For example, if befides the founds F^{*}, C^{*}, G^{*} in the common feale, $D^{*}, A^{*}, E^{*}, B^{*}, F^{* *}$ fhould alfo occur in a piece of mufic (a) move their ftops, and their ftrings will be ftruck by the keys of $E^{b} B^{b} F C G$ refpectively, whofe founds are ufually fubftituted for the founds required.
12. A mufician by cafing his eye over any piece of mufic, can foon fee what flat or fharp founds are ufed in it which are not in the common fcalc; and to fave that trouble for the future, may write them down at the begimning of the piece. Now and then it may be proper to obierve whether

[^15]ther the outermoft of them in their progreffion by $\mathrm{v}^{\text {ths }}$, fhould be put in or not, left its fubftitute fhould occur oftener than the principal found itfeif. If both occur, that which recurs oftener muft be in the fcale. But as both occur very feldom the matter is fcarce worth notice.
13. To fhew by infpection which are the falfe confonances in the Harpfichord after any flat or flarp founds are put into it by the ftops; imagine the two middlemoft tranfverfe parallelograms in the Table (b) and alfo the circles furrounding the notes which are not in the common harpfichord, to be drawn with the point of a diamond upon a pane of glafs laid over them. Then if the founds of D^{*} and A^{*} for inftance be put into the harpfichord, move the pane two lines higher till the uppermoft line of the two parallelograms juft takes in thofe two notes in col. I, and in this pofition the circles upon the pane will cover all thofe notes in the table which are not in the prefent fcale of the harpfichord, and point out the faife confonances to every key.

I4. Thus you fee how to make any given key as E or B, as free from falfe confonances as D or A is in the common fixed fcale; namely by putting in by the ftops as many fharp notes above G^{*} in the column of keys as fhall bring E and B into the middle of the 12 keys then in inftrument. And the like may be done for any given key below D by putting in flat notes below E^{b}.

And
(b) Plate xix.

And thus a mufician that tranfpofes mufic at fight can accompany a voice with the pureft and fineft harmony in the propereft key for the pitch of the voice. I fay the fineft harmony ; becaufe this changeable fcale may eafily be tuned to the moft harmonious fyftem (c) which is impracticable upon the common fixed fcale, becaufe the diefis would be fo large as to render the falfe confonances infufferably bad (d).
15. The famous Ruckers and other muficians of a delicate ear, always valued the tone of a fingle ftring for its diftinctnefs and clearnefs, fpirit and duration, and preferred it to that of unifons and octaves. I muft confefs I have long been of that opinion, even before I thought of this changeable fcale of fingle founds, which however after fome years experience upon my own harpfichord has fully confirmed me in it.
16. Unifons by themfelves or with an oftave are indeed an addition to the loudnefs of the tone, but not nearly in proportion to the number of ftrings. Firft becaufe the oppreffion of the belly of the inftrument by the force of fo many ftrings, hinders the facility and duration of its tremors; and fecondly becaufe in tuning unifons or octaves, it is manifett that their tone is never clear, loud and flowing, like that of a fingle fring, except when they are precifely perfect. But as this perfection continues but a very little time, efpecially after
(c) Prop. xvr. fchol. 2. art. 10 and 13 .
(d) Sect. vili. art. 2.
after the room is warmed by company, that clear finging tone is foon deftroyed.

The compound tone of unifons by themfelves, or with an octave, being of itfelf fo inditinct, what beating and jarring mult refult from their complicated mixtures in playing three or four parts of mufic? Efpecially as the imperfections of the unifons and octaves in the courfe of playing are frequently added to the temperaments of the other confonances, which if they were perfect could not bear thofe imperfections fo well as the unifons and octaves do when founded by themfelves (e). This confufed noife, like that of a dulcimer, is but too plainly perceived when the ear is held over the ftrings of the harpfichord; and fince it refults from the multiplicity of ftrings, it appears that the beft way to improve thisinftrument is to find out methods for increafing the ftrength and clearnefs of the tone of fingle ftrings.

I 7 . To me, who feldom hear any other than the fingle fltings of my own harpfichord, the tone is as loud as I defire, not only for lefions and cantatas but alfo concertos accompanied with inftruments in'a large recm. This indeed is more than a perfon could expect who has feldom or never attended to the tone of fingle ftrings except in the flort pianos after the long continued fortes upon the full harpfichord. 'The reafon is that the very fame objects affect our fenfes very differently in diffcrent circumftances, as is very evident in attending to any other fenfation as well as that of founds.
(c) Prop. xinh corol!. S.
founds. "For inftance, in coming out of a frong " light into a room with the window-fhutters al" moft clofed, we immediately have a fenfation " of darknefs or a very little light, and this con" tinues much longer than the pupil requires to " dilate and accommodate itfelf to that weak de" gree of light, which is almoft inftantaneounly " done. But after flaying fome time in the fame " or a much darker place, the fame room which " appeared dark before, will be fufficiently light." This obfervation is plainly applicable to founds, and more of them upon the other fenfes may be feen in Dr. 'Gurin's Effay on diftinct and indiftinct Vifion at the end of my Optics (f).
18. An expedient for changing the founds of any barpfichord ready made, werbereby to experience the truth of the foregoing obfervations.

Pl. xxvi. The $66^{\text {th }}$ figure reprefents the heads t, u of two jacks ftanding as ufual upon one key, with their pens pointing oppofite ways under the ftrings on each fide of them, as G^{*} and A^{b}, the back unifon being raifed to A^{b}. And $a b c d$ reprefents a fmall brafs fquare of the fize in the figure, whofe fhorter leg $a b$ is made very thin and placed between the jacks with its flat fides facing them; and the longer leg bced, being placed directly over, and parallei to the next couple of ftrings that are clofert together, is filed four
(f) Art. 267.
four fquare, and flides lengthways in two fquare notches at c and d made in the parallel fides $f c g, b d i$ of a long brafs plate turned up like the fides of a long hallow trough, which is fupported a little above the ftrings by a row of finall brafs pillars placed between the larger intervals of the flings, as at $r, s, \& c$, (but farther afunder) and fkrewed faft into the pinboard of the harpfichord.

Thefe pillars have long necks paffing through the holes $r, s, \& c$ in the bottom of the trough, and the nuts $r, s, \&<c$ are fkrewed upon the necks down to the bottom, to hold it faft upon the houlders of the pillars. And a brafs lid FGHI with oblong holes $R S, \& c$ correfponding to r, s, $\& c$, being laid upon the trough $f g b i$, the upper nuts $R, S, \& \mathrm{c}$ muft be fkrewed upon the fame necks, to keep the lid tightifh upon the longer leg. of the fquare $a b c d$ and others of the fame fize. A flit $m n$ is made in the lid for a fhort round pin e in the lenger leg $c d$ to come thro' it, and to move in it to and fro by a touch of the finger laid upon the pin. There muft be as many fuch fquares as keys or couples of jacks, and the trough and lid may be each of one piece or confift of two or three pieces joined together at the necks of the pillars or any where elfe.

While the jacks t, u are kept at their full height by holding down their key, with your finger laid upon the pin e pufh the leg $a b$ againft the far jack and mark the edge, or inner fide of it with a line drawn clofe by the upper edge of the
the leg $a b$; and after the fquare is drawn back, make fuch another mark upon the edge of the near jack. Then from a fmall flender pin cut off a piece of a proper length meafured from the point, and taking hold of its thicker end with a pair of pliers, prefs the point into the inner edge of the jack, a little above the mark and far enough to flick faft in it, and do the like to the oppofite jack. Let each pin project from its jack about a quarter of the fpace between the two jacks, leaving about half of it void in the middle between the oppofite ends of the pins, as reprefented in the figure.

Now when the two jacks are again raifed by their key and kept at their full height, by drawing the fquare backwards with your finger laid upon the pin e in the longer leg, the fhorter leg $a b$ will come under the pin in the near jack, and. keep it fufpended with its pen above the fring G^{*}, which therefore will be filent while the far jack plays alone upon the ftring A^{b}; or, by pufhing the fquare forward with your finger at e, the leg $a b$ will go under the pin in the far jack, and fufpend its pen above the ftring $A b$, while the near jack plays alone upon the ftring $G *$.

When all the Atrings of the back unifon are tuned to the notes in the upper line in art $\mathrm{II}^{\text {th }}$ all their jacks muft be fuipended on the fhorter legs of the fquares; and then all the fore jacks will ftrike the founds of the vulgar fcale; and when other flat or harp founds are required in any piece of mufic, they mut firt be introduced by holding
ing down the keys of their ufual fubftitutes, one by one, and by drawing back the correfponding fquares with a finger laid upon their pins at e. So long as you choofe to play upon this changeable fcale, keep the knobs of the right-hand ftops of a double harpfichord tyed together by a ftring.

When the ftrings are tuned unifons again, you may play upon them without removing this mechanifm, provided you firft draw every pin e towards the middle of the flit $m n$, in the lid $F I$, till it be oppofite to the angular notch 0 , and then draw the lid lengthways by the button p, till the notch o embraces the pin e and keeps the fhorter $\operatorname{leg} a b$ in the middle of the void fpace between the ends of the pins in the oppofite jacks: otherwife thefe pins may fometimes ftrike againft the fhorter legs of the fquares. If that middle fpace be too narrow, try whether it may not be widened a little by feparating the fliders with fome very thin wedges put between them : perhaps a little may be planed off from the back edges of the fliders without hurting them.

I have deícribed this mechanifm fo fully, I think, that any man who works true in brafs may eafily apply it at a fmall expence to any harpfichord ready made, and take it quite away without the leaft damage to the inftrument. I have ufed it fome years in my own harpfichord with great pleafure and no other inconvenience than that of removing the mufic book in order to touch the pins in the brafs fquares behind it. But the following mechanifm for the reception of which
a little preparation muft be made in the fabric of a new harpfichord, is quite free from that inconvience, and changes any found together with all its octaves in an inftant, without putting down their keys.
19. To make a new barpfichord wherein the founds being changeable at pleafure, the ufual fet of keys glall immediately frike the proper fcale for any proposed piece of mufic.

Pl. xxvr. Fig. 67. Conceiving the pins, ftrings and jacks which in every octave belong to the notes A, B, D, E, to be taken away from the fore unifons of a common harpfichord, the remaining pins, ftrings and jacks will be fufficient for the new harpfichord. Let the founds of thefe ftrings be altered to the notes here placed by the fides of their pins, and let thefe notes be written on the pin board of the new harpfichord; and that the tones of the ftrings founded by the jacks in each row, may be as like each other as poffible, let the tongues of the new jacks be put as near as may be to their inner edges, and thefe oppofite edges be placed in the new flider as near as may be to one another, as reprefented in the figure.

Each of the kevs, A, B, D, E, that moves but one jack (which therefore mult be made as heavy with lead as two of the other jacks) ftrikes always one and the fame ftring. But each of the 8 remainM
ing
ing keys, $B^{b}, C, C^{*}, E b, F, F^{*}, G, G^{*}$, which moves a couple of jacks, is intended to ftrike either of their ftrings alone at pleafure; that is, A^{*} or B^{b}, B^{*} or C, C^{*} or D^{b}, D^{*} or E^{b}, E^{*} or F, F^{*} or $G^{b}, F^{*}{ }^{*}$ or G, G^{*} or A^{b}.

Pl. xxviII, Fig. 70. I think the beft way to do this would be to have eight ftops or brafs knobs flkrewed as ufual on the fhanks of eight draugit irons made moveable in eight flits cut in the fore board of the new harpfichord: But to fave a quarter of the labour and expenfe I propofe to do it almoft as well with only fix, that is, three at each end of the fore board, as in the figure: where the notes of each couple of the changeable founds are written on oppofite fides of each knob, to the intent that the found or ftring fignified by this or that note to wobich the knob is puyked, may be ftruck alone by the key belonging to both the notes, while the other ftring is filent. And fince eight founds are intended to be changed by fix knobs, each extreme knob is defigned to change two founds at one puth of it towards either couple of notes at the end of the flit, according to the fame rule as before.
Hence by pufling the two outermof knobs at the bafe end of the fore board, towards the right hand, and all the reft towards the left, the keys will ftrike the eight changeable founds in the vulgar fcale, namely $F^{*}, C^{*}, G^{*}, E^{b}, B^{b}, F, C, G$, to be occafionally changed by pufing the knobs the contrary way: the other four, A, B, D, E, are fixt founds.

The notes of the changeable founds are placed in fuch an order, that the founds belonging to the notes on the fame fides of the fuccelfive knobs, continually afcend or defcend by $\mathrm{v}^{\text {ths }}$, as in the Table of keys and confonances in Plate xix. Becaufe this order will be found much more convenient for altering and adapting the Scale to different pieces of mufic, than the alphabetical order of the fame notes.

Now this defign may be executed as follows.
Pl.xxvi. Fig. 67 . When the pens for the back unifons are put under their frings, as denoted in the figure, and thofe for the fore unifons are drawn off from theirs by the fops of the common harpfichord, the jack holes in the two parallel rows have the fame fituation with refpect to each other as they are intended to have in the new flider, except as already obferved that the fpace between the two rows fhould be much narrower than in the common harpfichord.

By thefe directions if an accurate draught of all the jack holes be made upon a long brafs plate, part of which draught is reprefented in the figure, it may ferve as a general pattern for making the new fliders, or at leaft to give a clear conception of their dimenfions, which a workman may execute in what manner he pleafes. In order thereto let fix brais plates well flated by a mill be made equal to each other in all their dimenfions. Let the length of each be equal to, or rather longer at firt than that of a common flider, and the breadth of each be fufficient for M 2
leaving
leaving a pretty ftrong margin on the outfides of the jack holes, and then the thicknefs, after the work is finifhed and polifhed on both fides, need not exceed a twelfth of an inch.

Fig. 67. In the $I^{\text {f }}$ plate or flider the oppofite holes for the jacks A^{\times}and B^{b} and all their octaves, being made equal to thofe in the general pattern, let all the reft be made wider on each fide, than thofe in the pattern, by a twelfth of an inch, as reprefented at N° I, below fig. 67.
In the 2^{d} flider the holes for the jacks B^{*} and C and, to fave another flider, for F^{*} and G being made equal to thofe in the pattern, let all the reft be made wider on each fide, than thofe in the pattern, by $\frac{1}{12}$ of an inch, as at $\mathrm{N}^{\circ} 2$.

In the $3^{\text {d }}$ flider the holes for the jacks C^{*} and D^{b} and, to fave another flider, for F^{*} and G^{b} being made equal to thofe in the pattern, make all the reft wider on each fide by $\frac{1}{12}$ of an inch.

In the $4^{\text {th }}$ flider the holes for the jacks $D *$ and E^{b}, and in the $5^{\text {th }}$ flider for E^{*} and F, and in the $6^{\text {th }}$ flider for G^{*} and A^{b} being made equal to thofe in the pattern, let all the reft in each flider be made wider on each fide, than thofe in the pattern, by $\frac{1}{12}$ of an inch.

Pl. xxvii. Fig. 68. An under focket $p q$ being made of wood as ufual, that is, widh jack holes directly oppofite to one another but nearer together as already obferved, and being placed as near to the keys as may be, let an upper focket $r s$ be made

Art. 19. HARMONICS. 181
made of brafs, exactly equal to the pattern in fig. 67 but without the notches for the tongues to play in; in which focket let every jack hole except for A, B, D, E, be made wider on its left fide only by $\frac{1}{12}$ of an inch.

Leave $\frac{6}{12}$ or half an inch in height above this upper focket $r s$, for the fix fliders numbered $1,2,3,4,5,6$ as above, to lie upon it, and let all be fupported as ufual by crofs pieces of boards fixed underneath.

All the jacks being put thro' their holes, this $68^{\text {th }}$ figure reprefents a view of their edges and of the widening of the holes on each fide, as they would appear to a diftant eye placed at the fore end of the harpfichord, fuppofing the fore board and fore margin of the fockets and fliders were taken away.

When the two fockets $p q$ and $r s$ are fo adjufted in their places that the jacks A, B, D, E ftand upright and ftrike their ftrings, fix the fockets in that pofition at one end only, that the fhrinking or fwelling of the harpfichord may not bend or ftrain them. Then pufl all the fliders towards the right hand, till the pens on the right hand of the other jacks in the far row fhall ftrike their ftrings too. fee alfo fig. 67.

Then if any flider be drawn back again, which the widened holes will permit, it will draw back the jacks in its narrow holes only, withoutftirring the reft, and bring the right hand pen of the far M_{3} jack
jack from under its ftring on the right hand and put the left hand pen of the near jack under its frring on the left hand; and then this latter ftring will be founded alone by the fame key while the former is filent.
The holes in the fliders for the jacks A, B, D, E, which have no motion fideways, need be widened on their right fides only, as reprefented by the fhades, to make room for the fliders to move towards the left hand; but if they be widened on both fides, according to the general direction above, no inconvenience will follow from it.

According to the ufual breadth of harpfichords the compafs of ourfcale may conveniently be from double G up to e in alt.

Pl. xxvili. Fig. 69. When the fix fliders are laid upon one another in any order, provided they coincide in length and breadth (and keep fo by two pins put thro' two columns of holes at their ends) three round holes muft be drilled through them all in the vacant places at k and l, oppofite to the jacks b and d in alt, and at m a little above c in alt ; and the hole at k in the $I^{\mathfrak{f}}$ flider, at l in the $5^{\text {th }}$, as numbered above, and at m in the $2^{\text {d }}$ remaining round, all the reft muft be lengthened by $\frac{1}{12}$ inch on the right hand and by as much on the left, to the end that a fteel pin put thro' the round hole in any of thole fliders (g) may draw

[^16]it on either fide $\frac{1}{12}$ of an inch, without moving any other flider.

Oppofite to the centers of the round holes at k, l, m, and at the diftance of about an inch and half from each center, are three other centers n, o, p upon the pin board, where two concentric circles are drawn about each, one with a radius about $\frac{3}{4}$, and the other about $\frac{1}{4}$ or $\frac{3}{10}$ of an inch. Each larger circle reprefents a brafs plate having a cylindrical neck whofe bafe is the leffer circle and height about a fixth of an inch. The upper half of each neck is filed fquare and a dkrew hole is made in the middle of it. The round plates n, o are fkrewed upon the furface of the pin board with flat headed lkrews funk below the furface of the plates; but the plate at p is firft let into the pin board as deep almoft as the plate is thick and then is fkrewed down.

Three fteel pins made to fit the round holes k, l, m in the $1^{\text {th }}, 5^{\text {th }}$ and $2^{\text {d }}$ fliders, already mentioned, are riveted to the far ends of three flat draught irons N, O, P, and each pin is kept firm to each iron plate by a fhoulder below and a collar above.

Cut three flits in the fore board at r, s, t, directly oppofite to the centers n, o, p, and having put the fhank y of the ftraiteft draught iron P thro' the flit t, and its fteel pin into the column of holes in the fliders at m, and the large cylindrical hole P over the neck p which jutt fits it; by moving the flank fideways the 2 dider which M4 has
has the round hole, will be moved alone by the fteel pin. And to keep this flider from being ftirred by a like motion of thofe above or below it, a brafs wafher, or circular fpringing plate, whofe diameter it equal to that of the brafs circle below, is fitted tight upon the fquare part of the brafs neck and preffed down upon the draught iron by a fteel fkrew fkrewed into the hole p in the middle of the neck.

The other two draught irons O, N are made crooked to go round about the end of the bridge and the extreme pins in the pin board, and are placed in like manner as before upon the brafs circles $0, n$; that upon 0 having another large hole wide enough to receive the fkrew head at p and to give liberty to its own angular motion about the neck o. The hole at N in the third iron plate being put upon the neck n and over the two former plates, has two other holes wide enough to receive the fkrew heads at o and p, and alfo to afford room for its own angular motion about the neck n, the planes of thefe two iron plates being fet off upwards with cranked necks in order to move them above the other plates.

Allowing $\frac{1}{15}$ of an inch for the motion of any flider, or pen of a jack, the motion of any iron Ahank at its flit is to $\frac{1}{15}$ of an inch, in the given ratio of $p t$ to $p m$, which motion is therefore determined; and the breadth of any fhank at the flit added to its motion there, gives the length of

Art. 19. HARMONICS. 185
the flit, which length, if experience fhall require it, muft either be augmented, or blocked up a little at either end or both, for adjufting the proper quantity of the flider's motion.

In the like vacant places at the bafe end of the fliders, three other columns of holes muft be drilled thro' them all, and the holes in the 3 , $6^{\text {th }}$ and $4^{\text {th }}$ fliders remaining round (b) all the reft muft be lengthened on both fides, on purpofe to draw any of thofe fliders feparately (without moving the reft) by fteel pins fixed as before in the ends of three other draught irons, of fimilar fhapes to thofe at the treble end: the ftraiteft being next the fide board and funk down a little, the 2^{d} going over it, and the 3^{d} over both. Note that the draught irons move under the ftrings of the harpfichord.
Fig. 70 . Two fliders being faved, two founds belonging to two extreme notes at each end of the two progreffions by $\mathrm{v}^{\text {ths }}$, are changed both together by the extreme knobs, rather than any two belonging to the intermediate notes. For as the extreme founds G^{b} and D^{b}, or B^{*} and F^{*}, are feldomer ufed than any of the means that are out of the vulgar fcale (i), if either of their ufual fubftitutes, F^{*} and C^{*}, or C and G, which are both excluded by the principals, G^{b} and D^{b}, or B^{*} and $F^{* *}$, fhould chance to occur and interfere with them in the fame piece of mufic, it follows that
(b) See thofe numbers in the lower line of Fig. 70.
(i) See the Table in Plate xix.
that fuch accidents will happen feldomer in the former than in the latter cale.
Upon communicating this method of changing the founds cf a harpfichord at pleafure, to two of the moft ingenious and learned gentlemen in this Univerfity, the Reverend Mr. Ludlam and the Reverend Mr. Michel, they encouraged me to put it in practice upon a harpfichord made on purpofe by Mr. Kirkman; and were fo kind not only to direct and affift the workmen, but alfo to improve the ufual method of drawing the fliders in the accurate fteady manner above defcribed; which anfwers the defign fo well, that a mufician even while he is playing, can without interruption change any found for another which he perceives is coming into ufe: which however is feldom required if the fcale be properly adjufted before he begins to play.

It may not be amifs to obferve that a careful workman might fave fome time and labour, if inftead of widening each hole in the fliders feparatcly, he fhould pierce out fome long holes between thofe couples of narrow ones which move the jacks; leaving a few flender crofs pieces here and there to add fufficient ftrength to the flider while he is working it.

Sect. IX. HARMONICS.

S E C TION IX.

Methods of Tuning an organ and other inftruments.

Practical Principles.
I. A confonance of any two mufical founds is imperfect if it beats or undulates, and is perfect if it neither beats nor undulates.
II. Any little alteration of the interval of a perfect confonance makes it beat or undulate, flower or quicker according as the alteration is fimaller or greater.
III. If the interval of a perfect confonance be a little increafed, the imperfect one is faid to Beat Sharp; if a little diminifhed, to Beat Flat (k).
IV. An imperfect confonance will be difcovered to beat fharp, if a very finall diminution of its interval retards the beats; or to beat flat if any diminution accelerates them.
V. The harmony of a confonance is the fineft and fmootheft when it neither beats nor undulates, and grows gradually coarfer and rougher while the beats are gradually accelerated by very fmall alterations of the interval.
VI. A fmall alteration is fooner perceived in the rate of beating than in the harmony of a confonance, and both mult be attended to in tuning an
(k) See Schol. 5. to Prop. xx . in the Appendix.
an inftrument, efpecially the harpfichord, where the beats are weak and of fhort duration.
VII. If any imperfect confonance be founded immediately after another, an attentive ear can determine very nearly whether they beat equally quick, or elfe which of them beats quicker, even without counting the beats made in a given time; efpecially upon the organ, where the beats are ftrong and durable at pleafure.
VIII. If feveral imperfect confonances of the fame name, as $\mathrm{v}^{\text {ths }}$ for inftance (by which the whole fcale is ufually tuned) beat equally quick, they are not equally harmonious; to make them fo, the higher in the fcale ought to beat as much quicker than the lower as their bafes vibrate quicker ; that is, if a ${ }^{\text {th }}$ be a tone higher than another, it fhould beat quicker in the ratio of 10 to 9 or of 9 to 8 nearly; if a $1 I^{\text {d }}$ higher, in the ratio of 5 to 4 ; if a $v^{\text {th }}$ higher, of 3 to 2 ; if an vini higher, of 2 to I; \&c.
IX. Pl.xx.Tab.iv. v. Beginning at any note as G of the undermoft progreffion by tones, if two afcending $\mathrm{v}^{\text {ths }} G d, d a$ and the defcending $\mathrm{viri}^{\text {th }}$ $a A$ and the two next afcending $\mathrm{v}^{\text {ths }} A e, e b$ be all made perfect, the $\mathrm{vt}^{\text {th }} G e, d b$ and the $\mathrm{x}^{\text {th }}$ $G b$ will be found to beat harp and fo quick as to offend the ear by the coarfenefs of their harmony compared with that of the $\mathrm{v}^{\text {ths }}$. Which fhews that in order to make all thofe concords and their complements to, and compounds with vint ${ }^{\text {ths }}$ more equally harmonious, the intervals

Art. I. HARMONICS.
189
of the $\mathrm{v}^{\text {ths }}$ and confequently of the $\mathrm{vi}^{\text {ths }}$ and $\mathrm{x}^{\text {ths }}$ muft be a little diminifhed in the following manner.

PRECEPTS

for tuning an organ or barpfichord by eftimation and judgment of the ear.
i. Pl. xx. Tab. v. Alter fucceffively the trebles of the afcending $\mathrm{v}^{\text {ths }} G d, d a$ till they beat flat, the lower $v^{\text {th }}$ very flowly and the higher a little quicker; and the defcending virith $a A$ being made perfect, alter the trebles of the next afcending $\mathrm{v}^{\text {th }} A e, e b$ till they beat flat a very little quicker than the two former refpectively.

Then if the $\mathrm{x}^{\text {th }} G b$, between the bafe of the firft and treble of the fourth $\mathrm{v}^{\text {th }}$, beats fharp and about as quick as the $\mathrm{v}^{\mathrm{th}} G d$ to the fame bafe, thofe 6 notes are properly tuned for the defective fcale of Organs and Harpfichords in common ufe.

But if that $\mathrm{x}^{\text {th }} G b$ beats fharp confiderably quicker than the $v^{\text {th }} G d$, every one of thofe four $\mathbf{v}^{\text {ths }} G d, d a, A e, e b$ mult be made a very little flatter in order to beat a very little quicker than before.

On the contrary, if the $\mathrm{x}^{\text {th }} G b$ beats fharp, confiderably flower than the $\mathrm{v}^{\text {th }} G d$, or not at all, or flat, thofe four $\mathrm{v}^{\text {ths }}$ mult be made harper, to beat flat a very little flower in the firft cafe, and ftill lower in the fecond and third cafes; till an
equality of beats of the faid $x^{\text {th }}$ and $v^{\text {th }}$ to the fame bare G be nearly obtained.

In like manner, the defeending vint ${ }^{\text {th }} b B$ being made perfect, let the two next afcending $\mathrm{v}^{\text {ths }}$ $B f^{\star}, f^{*}$ be made to beat flat a very little quicker than the $\mathrm{v}^{\text {ths }} A e, e b$ refpectively, fo as make the $x^{\text {th }} A c^{*}$ beat fharp about as quick as the $\mathrm{v}^{\text {th }} A e$ to the fame bafe.

Laftly make the $I I^{\text {d }} e g^{*}$ beat as quick as the $\mathrm{v}^{\text {th }} e b$ to the fame bafe: Becaufe the $1 I^{\text {d }}$ beats juft as quick as the $\mathrm{x}^{\text {th }}$ to the fame bare, of neceffity.

If we had begun at the loweft note E^{b}, the whole fcale might have been tuned by afcending two $\mathrm{v}^{\text {ths }}$ and defcending an viII ${ }^{\text {th }}$ alternately; but it is better to tune the lower part of it in going backwards from G, afcending by an virith and defcending by two $\mathrm{v}^{\text {th }}$ alternately, as follows.

Let the afcending virif $G g$ be made perfect, and by altering fucceffively the bafes of the defcending $\mathrm{v}^{\text {th }} g c, c F$, make them beat flat a very lititle flower than the $\mathrm{v}^{\text {ths }} a d, d G$ refpectively, till the $x^{\text {th }} F a$ and the $v^{\text {th }} F c$, to the common bafe F, beat equally quick; and thus thofe two $v^{\text {th }}$ are properly tuned, and fo may the reft as the notes direct.

Then tune perfect viriths to every one of thofe Notes.
2. Pl. xx. Tab.v. If the inftrument has a changeable fcale (l) having put out all the founds by their ftops but thofe of the common fcale, the
(l) Sect. vini art. if , 18, ig.
the method of tuning it is the fame as before, obferving only that cvery one of the four $\mathrm{v}^{\text {ths }}$, as $G d$, $d a, A e, e b$, muft beat flat a very little quicker than before in the common defective fcale, till every $v^{\text {th }}$ and $v^{t^{\text {th }}}$ to the fame bafe beat equally quick, the $v^{\text {ths }}$ flat and the $\mathrm{vI}^{\text {ths }}$ harp, as $G d$ and $G e, d a$ and $d b, A e$ and $A f *$, sxc. and there being fo adjufted, every $x^{\text {th }}$ and $1 I^{d}$ as $G b$ and $G B, d f^{*}, A c^{*}, e g^{*}$, will beat flowly flat as they ought to do.

Likewife in tuning backwards from G or g, the defcending $v^{\text {ths }} g c, c F$ mult alfo beat flat a very little flower than a $d, d G$ refpeczively, till every $v^{\text {th }}$ and $\mathrm{vi}^{\text {th }}$ to the fame bafe, as $c g$ and $c a, F c$ and $F d_{\text {, }}$ $\& c$ beat equally quick; and thefe being fo adjufted the $\mathrm{x}^{\text {th }}$ and $\mathrm{III}^{\mathrm{d}}$ as $F a$ and $F A$, \&xc, will beat flat very flowly, as they ought. Then having tuncd $8^{\text {ths }}$ to all the founds of the common feale, change E^{b}, B^{b}, F, C, G, D and all their $8^{\text {ths }}$ into $D^{*}, A^{*}, E^{*}, B^{*}, F^{* *}, C^{*}{ }^{*}$ and their $\delta^{\text {ths }}$, and according to the notes in Tab. II. ${ }^{\text {d }} \mathrm{Pl} . \mathrm{xx}$, proceed as before to tune the reft of the afcending $\mathrm{v}^{\text {ths }} G^{*} d^{*}, d^{*} a^{*}, \& c$.

Lafly change $G^{*}, C^{*}, F^{*}, \& x$ and their $S^{\text {ths }}$ into $A^{b}, D^{b}, G^{b} \& c$ and their $8^{\text {dhs }}$, and according to the notes in the fame Table proceed as before to tune the reft of the defcending $v^{\text {ths }} c^{b} A^{b}$, $a^{b} d^{b}, d^{b} G^{b}, \& c$.

But if d^{6} be the extreme flat note in the inftument, alter the bafe of the $v^{\text {th }} A^{b} e^{b}$ till it beats Hat and juit as faft as the vith Ab f beats tharp;
likewife
likewife alter d^{b} till the $v^{\text {th }} d^{b} a^{b}$ beats flat and juft as faft as the vith $d^{b} b^{b}$ beats fharp．

Then put out all the founds but thofe of the common fcale，to be changed again as occafions fhall require；and the harmony of the whole will be much more delicate than ufual in the opinion of fuch judges as can diftinguifh when harmony is fine and when it is coarfe（ m ）．

PROPOSITION XVIII．

To find the pitch of an organ．
デHE FIRST゙METHOD．
By the following experiment made upon our organ at Trinity College，I found that the par－ ticles of air in the cylindrical pipe called d ，or de－la－fol－re in the middle of the open diapafon（ n ） made 262 complete vibrations，or returns to the places they went from，in one fecond of time． And this number of vibrations is what I call the Pitch of the Organ．

Having fufpended a brafs weight of feven pounds averdupois at one end of a copper wire， commonly ufed for fome of the loweft notes of a harpfichord，I lapped the other end round a peg， taken from a violin，that turned fitly in a hole made in the wainfcot near the organ．Then by turning the peg to and fro I lengthened or fhort－ ened
（m）See Prop．xx．Schol．r．art． 5
（ 1 ）See the notation，Tab．iv．Plate x ．
ened the vibrating part of the wire, till it founded a double octave below the found of the pipe d abovementioned. Then having meafured the length of the vibrating part of the wire, while ftretched by the weight, from the loop below to the under fide of the peg, and added to it the femidiameter of the peg, I cut the wire, firft at the point of contact with the fide of the peg, and then at the loop below; for I found no need of a bridge either above or below. And having repeated the experiment with another piece of wire taken from the fame bunch, I found no fenfible difference either in the length or weight of the vibrating part; the length being 35.55 inches and the weight 3 I grains troy; and the feven pounds averdupois that ftretched it, was equal to 49000 grains troy, allowing 7000 for each pound.

Hence by a Theorem hereafter demonftrated (o), the number of femivibrations, forwards and backwards together, made by the wire in one fecond was is I, and the number of fuch vibrations made by the air in the pipe d, two octaves higher, was $4 \times 131(p)$, and fo the number of complete vibrations (q) was 2×131 or 262 Q.E.I.

Scbolium.

I made that experiment in the month of September at a time when the thermometer ftood at temperate or thereabouts.
$\mathrm{N} \quad$ But
(o) Prop. xxiv. coroll. I, 2. (p) Sect. I. art. 3 and 7 :
(q) Sect. I. art. 12.

But upon a cold day in November I found by a like experiment, that the fame pipe gave but 254 complete vibrations in one fecond; fo that the pitch of its found was lower than in September by fomething more than $\frac{1}{4}$ of a mean tone.

And upon a pretty hot day in Auguft I collected from another experiment, that the fame pipe gave 268 complete vibrations in a fecond of time; which thews that its pitch was higher than in November by almoft half a mean tone.

By fome obfervations made upon the contraction and expanfion of air, from its greateft degree of cold in our climate to its greateft degree of heat (r), compared with Sir Ifaac Neroton's theory of the velocity of founds, I find allo that the air in an organ pipe may vary the number of its vibrations made in a given time, in the ratio of 15 to 16 ; which anfwers to the major hemitone or about $\frac{7}{12}$ of the mean tone and agrees very well with the foregoing experiments.

Coroll. In order to know when the pitch of an organ varies, and when it returns to the fame again, is is convenient to keep a thermometer conftantly in the organ cafe.
(r) See Mr. Cotes's xuth Lecture upon Mydrôat. and Pneumat. towards the end.

THESECOND METHOD

of finding the pitch of an organ, or the number of vibrations made in a given time by any given note.

Let the notes $C, D, E, F, G, A, B, c, d, e, f$, g, a, b, c^{\prime}, be in the middle of the fcale, and from any Bafe note not higher than D, tune upwards three fuccefiive perfect $\mathrm{v}^{\text {ths }} D A, A e, e b$, and downwards the perfect $\mathrm{vI}^{\text {th }} b d$; then having counted the number of beats made in any given time by the imperfect virith $D d$, the number of complete vibrations made in that time by its treble d, will be 8 I times that number of beats.

For example fuppofe the viri ${ }^{\text {th }} D d$ be found to beat 65 times in 20 feconds; then 81×65 or 5265 is the number of complete vibrations made by the treble d in 20 feconds; and $\frac{5265}{20}$ or 263 is the number made in one fecond.

The time may be meafured either by a watch that fhews feconds, or a pendulum-clock, or a fimple pendulum that vibrates forwards or backwards in one fecond, whofe length from the point of fufpenfion to the center of the bullet is 39 inches and one eighth. And the perfon that obferves the meafure of the time muft give a ftamp with his foot at the beginning and end of it, while another perfon counts the number of the beats made in that time; which number dimiN 2 nifhed
nifhed by one, is the number of the intervals between thofe fucceffive beats and properly fpeaking is the number required. For greater accuracy the experiment fhould be repeated feveral times and a medium taken among the feveral refults.

DEMONSTRATION.

For if the notes $D, E, F, \& c$, ftand for the times of the fingle vibrations of their founds, we have $D: A:: 3: 2, A: e:: 3: 2, e: b:: 3: 2$ and $b: d:: 3: 5$; and by compounding thofe ratios we have $D: d:: 8 \mathrm{I}: 40$, which ratio being refolved into $8 \mathrm{I}: 80$ and $80: 40$, fhews that the $\mathrm{vin}{ }^{\text {th }} D d$ is tempered fharp by a comma. Whence in caf. i. Prop xI, putting $p=\mathrm{I}=q$, $n=\mathrm{I}$, we have $\beta=\frac{2 q n M}{16 \mathrm{I} p+q}=\frac{M}{8 \mathrm{I}}$ and $8 \mathrm{I} \beta=M$ the number of complete vibrations of the treble d of that viri ${ }^{\text {th }}$.

By the firft method d was found to vibrate 262 times in one fecond, which number being fubflituted for M hhews that the vin ${ }^{\text {th }} D d$ in that organ made $\frac{262}{81}$ or $3 \frac{11}{\frac{11}{1}}$ beats in one fecond, which are not too quick to be counted.

Coroll. I. Hence the numbers of vibrations made in a given time by any founds in the Diatonic Syftem (s) are given in the given organ; being
(s) Sect. ir ${ }^{\text {d }}$ art. I.
being reciprocally in the known ratios of their fingle vibrations.

Coroll. 2. By diminihhing each of the afcending perfect $\mathrm{v}^{\text {ths }} D A, A e, e b$ by $\frac{1}{4}$ of a comma and increafing the defcending $\mathrm{vt}^{\text {th }} b d$ by $\frac{\mathrm{I}}{4}$ of a comma, the viri ${ }^{\text {th }} D d$ which was too fharp by a comma, becomes perfect: which is another proof of the vulgar temperament (t).

THETHIRD METHOD

of finding by experiment the number of vibrations N made by any given found c of a given organ in a known time T .

In the fame notation as before let $c a$ be a flarp $\mathrm{VI}^{\text {th }}$ making β beats in the time T ; make $a d_{2}$ $d G, G C$ perfect $\mathrm{v}^{\text {ths }}$, and $C c$ will be an imperfect viriti ; which if fharp and making b beats in the time T, will give $N=81 b+16 \beta$; or if flat, $N=16 \beta-81 b$.

For $c: a:: 5+\frac{B}{N}: 3(u)$ and $a: d:: 2: 3$ and $d: G:: 2: 3$ and $G: C:: 2: 3$. Whence by compounding all thofe ratios, $c: C:: 40+$ $\frac{83}{N}: 8 \mathrm{I}$ and this virith being fharp and making N 3
(t) Coroll. Prop. II $^{\text {d }}$.
(ii) Prop. xı. cor. 7. cal. I.
b beats in the time T , gives $C: c:: 2: 1$ $\frac{b}{N}(x)$. Wherefore $80+\frac{16 \beta}{N}=8 \mathrm{I}-\frac{8_{1} b}{N}$ and $N=8 \mathrm{r} b+{ }_{1} 6 \beta$.

The virit $C c$ cannot well come out flat nor can its beats be too flow and indiftinct, unlefs thofe of the fharp $\mathrm{v}^{\text {th }} \mathrm{ca}$ were too quick to be eafily counted. This may be collected from the fecond neetbod.

THEFOURTHMETHOD

of finding the pitch of an organ, or N the number of vibrations of the found c in a known time T .

The notation of the fale being ftill the fame as in the furt metbod and the octave $G g$ being perfect, let the $\mathrm{v}^{\text {ths }} c g, G d, d a$, be made to beat flat 40, 30,45 times refpectively in a known time T; then, if $c a$ be a harp $\mathrm{v}^{\text {th }}$ making β beats in the time T, we have $N=3240+16 \beta$. But if it be a flat vi ${ }^{\text {th }}, N=3240-16 \beta$.

$$
\text { For } c: g:: 3-\frac{40}{N}: 2(y) \text { and } g: G:: 1: 2
$$ and $G: d:: 3-\frac{30 G}{N_{c}}: 2(z)$ and $d: a:: 3-$ $\frac{45 d}{N_{c}}: 2(z)$. Whence by compounding all thefe ratios,

(x) Prop. xi. cor. 7. caf. r.
(y) Irop. xi. cor. 7. caf. 2.
(z) Brop. XI. cor. - and coroll. 1 . to the 2^{d} method.
ratios, $c: a:: 27-\frac{1080}{N}: 16$; where if $c a$ be a fharp $\mathrm{vI}^{\text {th }}$ making β beats in the time $\mathrm{T}, c: a:$: $5+\frac{3}{N}: 3(a)$. Whence $27-\frac{1080}{N}: 16:: 5+$ $\frac{B}{N}: 3$ and therefore $N=3240+10 \beta$. But if $c a$ be a flat $\mathrm{vi}^{\text {th }}, N=3240-16 \beta$.

If the refulting $v \mathrm{v}^{\text {th }} c a$ beats flarp and too flowly and therefore too indiftinctly, or elfe too quick to be eafily counted; make the $\mathrm{v}^{\text {th }} c g$ beat flower or quicker refpectively. Alfo if that $\mathrm{vi}^{\text {th }}$ beats flat and confequently too flowly, make the $\mathrm{v}^{\text {th }} \mathrm{cg}$ beat much quicker. The moft convenient rate of beating is between 2 and 3 beats in a fecond *.

PROPOSITION XIX.

The pitch of an organ and the temperament of the $\mathrm{v}^{\text {th }}$ being given, to find the numbers of beats that every $\mathrm{v}^{\text {th }}$ will make in a given time.

The mufical notes in Tab. I or 2, Plate xx , hhew all the $v^{\text {ths }}$ of different names in a complete fcale of founds; which $v^{\text {ths }}$ by interpofing $8^{\text {ths }}$ are N_{4} placed
(a) Prop. xi. cor. 7. caf. i.

* In July 1 万5 5 that excellent mathematician the Reverend and Learned Mr. Tlio. Baves F, R, S, was pleated to fend me thefe two laft method, in return for a method of Tuming an Organ defcribed in fobolium 2 to Prop. x x, which I had fent him fometime before.
placed at fuch a pitch that the higher $\mathrm{v}^{\text {ths }}$ may not beat too quick to be counted, nor the lower too flow to be diftinguifhed. By the given temperament of the v^{th} and the given pitch of the organ, the number β of the beats made in a given time by the $v^{\text {th }} d a$ may be found by Prop. xI, and alfo the conftant ratio v to 1 of the times of the fingle vibrations of the bafe and treble of the $v^{\text {th }}$.

Then if a feries of $\mathrm{v}^{\text {ths }}$ equally tempered afcend continually from d, as in Tab. 3, the numbers of their beats made in a given time, will continually increafe in the ratio of I to $v(b)$ and therefore will be $\beta, \beta v, \beta v 2, \beta v 3, \beta v 4, \beta v 5, \beta v 6$, $\beta \cup 7, \beta v 8, \beta v 9$.

Now as often as any of thefe $\mathrm{v}^{\text {tha }}$ are depreffed by an octave, as in the upper half of the fcale afcending from d in $T a b$. I or 2, fo often muft thefe beats be divided by 2 (b) ; which changes that feries of beats into this, $\beta, \frac{\beta v}{2}, \frac{\beta v^{2}}{2}$, $\frac{\beta v^{3}}{4}, \frac{\beta v^{4}}{8}, \frac{\beta v^{5}}{8}, \frac{\beta v^{6}}{16}, \frac{\beta v^{7}}{16}, \frac{\beta v^{8}}{3^{2}}, \frac{\beta v^{9}}{32}$.

In like manner, if the former feries of $\mathrm{v}^{\text {ths }}$ be continued downwards from d, as in Tab. 3, the numbers of their beats made in a given time will continually decreafe in the ratio of v to I or of I to $\frac{1}{v}$, and therefore will be, $\frac{\beta}{v}, \frac{\beta}{v^{2}}, \frac{\beta}{v^{3}}, \frac{\beta}{v^{4}}, \frac{\beta}{v^{5}}$, $\frac{\beta}{v^{9}}, \frac{\beta}{v^{7}}, \frac{\beta}{v^{8}}, \frac{\beta}{v^{9}}, \frac{\beta}{v^{10}}$.

Now
(b) Prop, xi. coroll. 2.

Now as often as thefe $v^{\text {ths }}$ are raifed by an octave, as in the lower half of the fcale defcending from d, in Tab. I or 2, fo often muft thefe beats be multiplied by 2 ; which produces this feries of beats, $\frac{\beta}{v}, \frac{2 \beta}{v^{2}}, \frac{2 \beta}{v^{3}}, \frac{4 \beta}{v^{4}}, \frac{8 \beta}{v^{5}}, \frac{8 \beta}{v^{6}}, \frac{16 \beta}{v^{7}}, \frac{16 \beta}{v^{8}}, \frac{32 \beta}{v^{9}}, \frac{32 \beta}{v^{10}}$. Q.E.I.

Scholium.

For example, be it propofed to calculate the number of beats, in Tab. I, Plate $x x$, which every vth in the fyftem of mean tones will make in 15 feconds of time.

Here the temperament of the $\mathrm{v}^{\text {th }}$ is $\frac{\mathrm{I}}{4}$ of a comma (c), and fuppofing the interval of the perfect $v^{\text {th }}=\log \cdot \frac{3}{2}=0.1760913$, we have the comma $c=\log \cdot \frac{81}{80}=0.0053950$, and $\frac{1}{4} c=$ 0.0013488 , and the $v^{\text {th }}-\frac{1}{4} c=0.1747425$, which is the logarithm of the number I. 4953 or $\frac{1.4953}{1}$, that is, of the ratio of I .4953 to I , which in the folution of the problem we reprefented by v to I .

Now when the thermometer ftood at temperate, the pitch of our organ at Trinity College, or the number of complete vibrations made in \mathbf{r} fecond by the air in the pipe denoted by d in the middle of our table, was $262(d)$.

Hence

[^17]Hence to find the number of beats made in 15 feconds by the $v^{\text {th }}$ above d when tempered flat by $\frac{1}{4}$ comma, in prop. xi we have $m: n:: 3: 2$ or $m=3, n=2$ and $\frac{q}{p} c=\frac{1}{4} c$, or $q=1, p=4$, and fince the bafe d makes 262 complete vibrations in 1 fecond, in the given time of 15 feconds it will make 15×262 fuch vibrations $=N$, and the

Abacus I .

0.1747425	v	N^{0} of beats.
1.5629841	$\beta=36,558$	$\beta=37$
1.7377266	$\beta v=54,667$	$\frac{1}{2} \beta v=27$
1.9124691	$\beta v^{2}=81,747$	$\frac{1}{2} \beta v^{2}=41$
2.0872116	$\beta v^{3}=122,24$	$\frac{1}{4} \beta v^{3}=31$
2.2619541	$\beta v^{4}=182,79$	$\frac{1}{8} \beta v^{4}=23$
2.4366966	$\beta v^{5}=273,34$	$\frac{1}{8} \beta v^{5}=34$
2.6114391	$\beta v^{6}=408,73$	$\frac{1}{16} \beta v^{6}=26$
2.7961816	$\beta v^{7}=611,20$	$\frac{1}{16} \beta v^{7}=38$
2.9609241	$\beta v^{8}=913,95$	$\frac{1}{32} \beta v^{3}=29$
3.1356666	$\beta v^{9}=1366,7$	$\frac{1}{32} \beta v^{9}=43$

Prop. XIX. HARMONICS.
the number of beats made in that time, by caf. 2 , is $\frac{2 q \mathrm{~m} N}{161 p+q}=\frac{2 \times 3 \times 15 \times 262}{161 \times 4+1}=\frac{1572}{43}=\beta$, whofe logarithm is $\mathbf{I} .5629841$; to which adding continually the \log. of v, we get the logarithms of βv,

Abacus 2.

I. 8252575	$\frac{1}{v}$	N^{o} of beats
1. 5^{629841}	$\beta=3^{6}, 55^{8}$	$\beta=37$
1. 3882416	$\frac{\beta}{v}=24,448$	$\frac{\beta}{v}=24$
I. 2134991	$\frac{\beta}{v^{2}}=16,349$	$\frac{2 \beta}{v^{2}}=33$
1. 0387566	$\frac{\beta}{v^{3}}=10,933$	$\frac{2 \beta}{v^{3}}=22$
0. 8640141	$\frac{\beta}{v^{4}}=7,3116$	$\frac{4 \rho}{v^{4}}=29$
0.6892716	$\frac{\beta}{v^{5}}=4,8896$	$\frac{8 \beta}{v^{5}}=39$
0. 5145291	$\frac{\beta}{v^{6}}=3,2699$	$\frac{8 \beta}{v^{6}}=26$
o. 3397866	$\frac{\beta}{v^{7}}=2,1867$	$\frac{16 \beta}{v^{7}}=35$
0. 1650441	$\frac{\beta}{v^{8}}=1,4^{623}$	$\frac{16 \beta}{v^{3}}=23$
İ. 9903016	$\frac{\beta}{v^{9}}=0,9779$	$\frac{32 \beta}{v^{9}}=31$
İ. 8155591	$\frac{\beta}{\%^{10}}=0,6540$	$\frac{32 \beta}{v^{10}}=21$

$\beta v, \beta v^{2}, \beta v^{3} \& c$, as in the firf Abacus, and thence the correfponding numbers, which divided by the proper powers of 2 , as directed in the folution of the problem, give the afcending half of the fet of beats oppofite to the pitch 262 in Tab. \boldsymbol{I}.

The log. of v fubtracted from o gives the log. of $\frac{1}{v}$, which log. continually added to the log. of β, gives the logarithms of $\frac{\beta}{\nu}, \frac{\beta}{v_{2}}, \frac{\beta}{v_{3}}, \& c$ as in the 2^{d} Abacus. And thefe logarithms give the numbers themfelves, which multiplied by the proper powers of 2 , as above directed, give the defcending half of the fame fet of beats oppofite to the pitch 262 in Tab. I.

The fuperior fets of beats are defigned for tuning the fame or different organs, when their pitch is higher than this by $1,2,3$ or 4 quartertones, as noted at the beginning of the table, and may be found by the continual addition of the logarithm of a quarter-tone to the logarithms in each Abacus; and the firt inferior fet of beats may be found by the fubtraction of the log. of a quarter-tone from the faid fet of logarithms, or by the addition of its arithmetical complement: remembering to divide and multiply the correfponding numbers by the fame powers of 2 as before in each Abacus.

And as the $\frac{1}{4}$ tone is $\frac{1}{8}$ of the $\mathrm{III}^{\text {d }}$, its logarithm is $\frac{1}{8} \log \frac{5}{4}=0.0121138$, which continually
nually added to the logarithm of 262 , gives the fucceffive logarithms of the higher pitches 269 , $277, \& c$, in the firft column of the table, over againft the correfponding fuperior fets of beats; and fubtracted from the fame logarithm of 262, gives the log. of the loweft pitch 255, overagainft the loweft fet of beats.

From the given temperament of the fyttem of equal harmony (e) the beats of all the $\mathrm{v}^{\text {ths }}$ may be calculated by the fame method; and will be found as in Tab. I^{d}. Plate xx.

Coroll. i. Suppofing the middlemoft notes d, in the firft and fecond tables, to be unifons, the numbers of the beats in a given time, of any two correfponding $v^{\text {ths }}$ are very nearly in the given ratio of their temperaments $\frac{9}{36} c$ and $\frac{10}{36} c(f)$, or as 9 to io. For the beats would be in that ratio if their feveral bafe notes were exactly unifons (g); and the difference of their pitches at the diftance of the tenth $\mathrm{v}^{\text {th }}$ from the middle note d, is but ten times the difference of the temperaments, or $\frac{5}{18} c$; which produces the difference of but I beat in 290 in the extreme $\mathrm{v}^{\text {th }}$ in the tables, and lefs in the reft in proportion to their diftances from the note $d(b)$.

Coroll. 2. In the fyftem of equal harmony the ratio of the numbers of beats of the 11^{d} and $v^{\text {th }}$
(e) Prop. xvi, Schol. 2. art. io.
(f) Prop. 2. cor. and prop. xvi. fchol. 2. art. 10.
(g) Prop. xi. coroll. 4. and fchol. i.
(b) Cor. 4. lemm, to prop. ix. and cor. 2. prop. xi.
to the fame bafe, is 2 to 3 in a given time; as being compounded of the ratio of their temperaments $\frac{2}{18}$ and $\frac{5}{18} c$, and of the major terms of their perfect ratios $5: 4$ and $3: 2$ (i).

Coroll. 3. For the fame reafon the beats of the $\mathrm{v}^{\text {th }}$ and $\mathrm{vI}^{\text {th }}$ to the fame bafe are ifochronous in the fyftem of equal harmony, whereas in that of mean tones they are in the ratio of 3 to 5 in a given time.

PROPOSITION XX.

To tune any given organ by a given table of beats.

Having found the pitch of the organ by any of the methods in Prop. xviri, look for the neareft to it in the firft column of Table 1 or in, Plate xx, and overagainft it is the Proper Set of Beats for tuning the given organ. If the weather be confiderably hotter or colder at the time of tuning than it was when the pitch was found, allowance muft be made in the rumber of vibrations denoting the pitch, by the fchol. to prop. xviri.

Then flatten the treble a of the perfect $\mathrm{v}^{\text {th }}$ above $d(k)$ more or lefs, till the number of its beats, made in I_{5} feconds (l), agrees with the tabular
(i) Coroll. 3. prop. xu and fchol. 1.
(k) See the notation tab. IV. platexx.
(l) To be meafured as directed in the Second Method in prop. xvinf. But in this cafe count one beat more than the tabular number, as properly fignifying the number of intervals between the fuccofive beats.
tabular number placed over that $\mathrm{v}^{\text {th }}$ in the proper fet.

From the treble of that $\mathrm{v}^{\text {th }} d a$ tune downwards the octave $a A$, fo as to be quite free from beats, and repeat the like operation upon the next afcending $v^{\text {th }} A e$, and the like again upon the next till you have tuned all the dharp notes in the fcale of your organ.

Then going backwards from d, fharpen the bafe G of the perfect $v^{\text {th }}$ below d more or lefs till the number of its beats, made in 15 feconds, agrees with the tabular number placed over this y^{th} in the proper fet.

From the bafe of the $\mathrm{v}^{\text {th }} d G$, tune upwards the octave $G g$ and repeat the like operation upon the next defcending $v^{\text {th }} g c$, and the like again upon the next, till you have tuned all the flat notes in the fcale of your organ.

This being done, let all the other founds be made octaves to thefe, and the fcale will be exactly tuned according to the temperament in the given table; that is, all the $\mathrm{v}^{\text {ths }}$ will be equally tempered, and confequently equally harmonious (m), and fo will all the viths and every other fet of concords of the fame name, which anfwers the defign of tuning by a table of beats.

If you chufe to tune the organ according to the Hugenian fyftem, the fet of beats in Tab. I, next below that which anfwers to the pitch, found by any of the foregoing methods, will ferve your purpofe.

For
(m) Prop. xir coroll.

For the Hugenian ${ }^{\text {th }}$, having its temperament $-\frac{1}{4} c+\frac{1}{110} c$ fmaller than $-\frac{1}{4} c$, in the ratio of 53 to $55(n)$, beats flower than the tabular $\mathbf{v}^{\text {th }}$ in that proportion, which is but very little flower than it would do, if its pitch were depreffed by $\frac{1}{4}$ of a mean tone. Q.E.F.

Scholium I.

1. Since our organ at Trinity College was new voiced, and by altering the difpofition of the keys was depreffed a tone lower, and thereby reduced to the Roman pitch, as I judge by its agreement with that of the pitch pipes made about the year 1720; by the help of fuch a pipe one may know by how many quarter-tones the pitch of any other organ is higher than that of ours, and thus (without any of the methods in Prop. xvini) determine the proper fet of beats for tuning it (o).
2. At a time when the thermometer ftood at Temperate, as it did alfo when the pitch of our organ was found to be 262 , I affifted at the tuning of the $v^{\text {ths }}$ of the open Diapafon by the fet of beats oppofite to that pitch in Tab. r, and upon examining the $\mathrm{HII}^{\text {ds }}$ and $\mathrm{x}^{\text {th }} \mathrm{I}$ found them all perfect: a manifert proof of the theory of beats and of the certainty of fuccefs in tuning by it.
3. At that time the whole organ was tuned to the open diapafon, and is now univerfally allowed
(n) Prop. xvir. Schol. Tab. 2.
(0) See column 2, Tab. I, 2, plate xx.
to be much mote harmonious than before, when the major thirds were much fharper than perfect ones; and its harmony, I doubt not, is fill improveable by making them flater than perfect, according to the fyftem of equal harmony. But at that time I had not finified the calculation of it, and to repeat the tuning of the organ over again would be troublefome and improper at the prefent feafon, when cold and damp weather is coming on very faft.
4. For the propereft times for tuning the Diapafon of an organ feem to be from the latter end of Auguift to the middle of October, when the air being dry, temperate and quiet, will keep nearer to the fame degree of elafticity for a given time. Becaufe a very fmall alteration in the warmth of moift air will fuddenly and fenfibly alter its elaAtic force and thereby the pitch of the pipes before the whole ftop can be accurately toned.

For that reafon conftant care muft be taken not to heat the pipes by touching them oftener than is needful; nor to flay too long at a time in the organ cafe; nor to tune early in the morning, but rather towards the evening, when the air is drier and its declining warmth is kept at a ftay by the warmth of the perfons about the organ.

But thefe and the like cautions may fooncr be learned by a little practice than by any defcription, and if not altogether neceffary, will however contribute to the accuracy of tuning by fo nice a method which is plainly capable of any
defired degree of exactnefs provided the blaft of the bellows be uniform.
5. After tuning an organ according to any new fyftem whatever, we muft be cautious of judging too haftily of it. Some muficians here who had conftantly been ufed to major thirds and confequently major fixths tuned very fharp, could not well relifh the finer harmony of perfect thirds and better fixths in the organ newly tuned, till after a little ufe they became better fatisfied with it, and after a longer ufe they could not bear the coarfe harmony of other organs tuned in the ufual manner.

It is therefore neceffary to have equal experience in different objects of fenfe, in order to judge impartially, which of the two is more grateful than the other, as is evident in almoft every thing to which we are more or lefs habituated.
6. If a machine were contrived, as it eafily might, to beat like a clock or watch, any given number of times in 15 feconds, between 20 and 56 or thereabouts ; by fetting it to beat according to any given number in the table for tuning an organ, and by comparing its beats with thofe of the correfponding $\mathrm{v}^{\text {th }}$, the ear would determine immediately and exactly enough, whether they were ifochronous or not; and thus a harpfichord might be tuned almof to the fame exactnefs as an organ; and the tuning of an organ might be performed much quicker by the help of fuch a machine than by counting the beats as above.

Prop. XX. HARMONICS.

In the following method after 3 or 4 fifths are tuned by a little table of beats, the organ itfelf does the office of fuch a machine in all the reft.

Scholium 2.

To tune any given organ by ifocbronous beats of different concords.
r. The founds in the middle of the feale being called $C D E F G A B$ cdefgabc', make the ${ }^{\text {viI }}{ }^{\text {th }} G g$ quite perfect, and let the $\mathrm{v}^{\text {ths }} \mathrm{cg}, G d$, da be made to beat flat $38,28,42$ times refpectively in 15 feconds of time.

$\left\|\begin{array}{c} \mathrm{N}^{\mathrm{e}} \text { of } \\ \text { beats } \\ \text { of the } \\ \text { vith } \\ c a \end{array}\right\|$	The fyltem of Equal Harmony. Tab. I.			A proper fyftem for defective fcales. Tab. 2.			
	The numbers of beats of the $\mathrm{v}^{\text {ths. }}$						
	cg	Gd	da	cg	Gd	do	Ae
56	4 t .	$31-$	46-		2	3	27
50	40.	$30-$	45	$3 \mathrm{I}+$	$23+$	35	2
44	39.	29*-	44-	3 I	23 二	$34+$	25
3^{8}	38.	$28+$	$42+$	$30-$	$22+$	$33+$	25 二
32	37.	2S-	$4{ }^{1+}$	29-	22 -	$32+$	24^{+}
26	36.	27-	40+	28			24 -
20	35.	$26+$	39^{+}	27+	$20 \div$	3 I -	$23-$

Then having counted the number of beats made in 15 feconds by the refulting vith $c a$, look for it or the neareft number to it in the column of the beats of that vi ${ }^{\text {th }}$ placed before the tables. The
numbers oppofite to it in each table are the Proper Sct of Beats, which the faid $v^{\text {ths }}$ ought to make in the given organ, when tuned according to the fyfem mentioned in the title of each table.
2. For example, fuppofe the refulting $\mathrm{vi}^{\text {th }}$ thould beat 48 times in 15 feconds, the neareft number to it in the firft column is 50 and oppo-. fite to it in Tab. I, are $40,30,45$, the proper fet of beats of thofe $\mathrm{v}^{\text {ths }} c g, G d, d a$ for caufing the $v^{\text {th }}$ and $\mathrm{v}^{\text {th }}, c g$ and $c a$, to beat equally quick as they ought to do in the fyrtem of equal harmony (p).
Likewife in Tab.2, oppofite to the faid number 50 are $31,23,35,26$, the proper fet of beats of the $v^{\text {th }} c g, G d, d a, A e$, for caufing the $v^{\text {th }}$ and $I I^{d}$, $c g, c e$, to beat equally quick, which property makes a very proper fyftem for the defective fcales of organs and harpfichords in prefent ufe.
3. Alter then the trebles of the $\mathrm{v}^{\text {tho }} \mathrm{cg}, G d, d a$ till they beat flat $40,30,45$ times refpectively in 15 feconds, remembering by the way to make $g G$ a perfect vini ${ }^{\text {th }}$. Then upon founding the $v^{\text {th }}$ and vith $c g, c a$, immediately after each other, the ear will judge near enough whether they beat equally quick as they ought.
4. But if greater certainty be defired, count the beats of the $\mathrm{vi}^{\text {th }}$ cain 15 feconds. and if their number be 40 as that of the $v^{\text {th }} . \mathrm{cg}$ was, or differs from th by no more than 3 , over or under, you have found the proper fet ; but if the beats of the $\mathrm{V} 1^{\text {th }}$
(p) Eiop. xix. fchol, coroll. 3.
$\mathrm{v}^{\text {th }}$ differ from 40 by more than 3 and lefs than 9 , over or under, the next higher or lower fet refpectively, is the proper fet. Becaufe an alteration of fix beats of the $v \mathrm{I}^{\text {th }}$ anfwers in time to an alteration of but one beat of the $v^{\text {th }}$ to the fame bafe, as appears by the differences of the numbers in the firft and fecond columns. For which reafon, if in any experiment the beats of the $\mathrm{vI}^{\text {th }}$ ca fhould come out exadiy in the middle between any two numbers in the I^{f} column, you may take either of the fets oppoifte to them for the proper fet; the crror from the truth being but half a beat, that is, half the interval of the fucceffive beats of the $v^{\text {th }} c g$, which half cannot eafily be meafured. Yet the choice might be determined by altering the pitch of the found c a very little and repeating the experiment.
5. The proper fet for a given organ being once found, the $1^{\text {t }}$ experiment need never be repeated afterwards. For whatever be the proper fet in temperate weather, the next above it will be the proper fet in hot, and the next beiow it in cold weather (q). At moft, the fet fo determined need only be verified as in Article 3 or 4 whenever the organ wants to be retuned.
6. After the $\mathrm{v}^{\text {ths }} \mathrm{cg}, \mathrm{G} d, d a$ had been made to beat $38,28,42$ times in 15 feconds in the $I^{\text {t }}$ cxperiment, if the beats of the $\mathrm{vi}^{\text {th }} \mathrm{ca}$ had come out too quick, or too flow and indiftinet to
(q) Prop. xvini, fcholam?
be eafily counted, (which however cannot happen unlefs the pitch of the organ be immoderately higher or lower than ufual,) in the firft cafe ufe I3 feconds, and in the fecond 17 inftead of 15 ; and upon repeating the experiment the beats of the $\mathrm{vi}^{\text {th }} \mathrm{ca}$ will come out within the limits 20 and 56 , of the numbers in the firft column and point to the proper fet.
7. Lafty, if the beats of any $\mathrm{v}^{\text {th }}$ cannot foon be adjuted to the tabular number, which fometimes happens, and that number has the fign + after it, the excefs of a beat may be difpenfed with as being lefs erroneous in that cafe than the defect of a beat; and on the contrary, if the tabular number has the fign - after it.
8. Pl. xxv. Fig. 65. Now if you chufe to tune the organ to the fyftem of equal harmony, which being the moft
harmonious is the pro- v vi vins pereft for a changeabie $G d, G e$ fcale (r), in afcending $d a, d b \&$ tuning $a A$ from the founds, c, G, $A e$, $A f \times$
d, a tuned by the pro- $e b, e c^{*} \&$ tuning $b B$ pei fet of beats, make $B f^{*}, B g^{*}$ the vith $G e$ beat fharp $\& x, \& x c$ and juft as quick as
the given $v^{\text {th }} G d$, and do the like for every $\mathrm{vt}^{\text {th }}$ in the order annexed.

Likewife in defcending from the faid given founds
(r) Sect. vill art. nith.
founds c, G, d, a, alter the common bafe F of the $v^{\text {th }}$ and $\mathrm{vi}^{\text {th }}$,
$F c$ and $F d$, till v vi viif they beat equally $F c, \quad F d \&$ tuning $F f$ quick, the $v^{\text {th }}$ flat, $B^{b} f, \quad B^{b} g$ and the vi ${ }^{\text {th }}$ harp; $\quad E^{b} B^{b}, \quad E^{b} c$ \& tuning $E^{b} c^{b}$ and repeat the like $A^{b} E^{b}, A^{b} f$ practice in the or- \&cc, \&cc \&cc. der annexed.

If this fcale afcend fo high as to caure a $\mathrm{v}^{\text {th }}$ and $\mathrm{Vi}^{\text {th }}$, as $c b$ and $e c^{*}$ for inftance, to beat too quick, tune downwards the two vill ${ }^{\text {ths }} e E$ and $b B$ and leaving out the uppermoft row of the fharp notes, proceed with the lower rows. And do the contrary in the defcending part of the fcale, leaving out the undermoft flat notes where you find they beat too flow and defcending by the higher notes.
9. But till Inftruments are made with a changeable feale, it is more proper to tune the defective fcale in prefent ufe by making every $\mathrm{v}^{\text {th }}$ and $\mathrm{III}^{\text {d }}$, to the rame bafe, beat equally quick, the former flat and the latter fharp.

Make the $v^{\text {th }} \mathrm{cg}, G d, d a$, Ae beat fat 3 r , $23,35,26$, times refpectively, this being the proper fet found by Art. 1, 2, for the given organ, and the $1 \mathrm{I}^{\mathrm{d}} \mathrm{ce}$ will beat fharp equally with the $\mathrm{v}^{\text {th }} \mathrm{cg}$.

Plate $x x v$. Fig. 65 . Then in afcending from the founds c, g, G, d, a, A, c fo tuned, make the next in ${ }^{\text {d }}$
$G B$ beat harp and $v \quad$ viris equally with the giv- $G d, \quad G B$ and tuning $B \dot{b}$ en $v^{\text {th }} G d$, and do the $d a, d f^{*}$ like for the reftin the $A e, A c^{*}$ order annexed. eb, eg* Likewife indefcending from the fame $F c, F A, \&$ tuning $F f$ given foundsalter the $B^{b} f, \quad B^{b} d$ bare F of the $\operatorname{III}^{d} F A \quad E^{b} B^{b}, E^{b} G$. till it beats fhatp and equally with the given $v^{\text {th }} F c$ to the fame bafe, and do the like for the reft in the order annexed.

DEMONSTRATIONN.

P1. xxiv. Fig. A, which is defcribed in Prop. III and cor. I. 2. The beats of any given $v^{\text {th }}$ and $\mathrm{vi}^{\text {th }}$ to the fame bafe will be ifochronous, as they ought to be in the fyftem of equal harmony, when their temperaments are as 5 to $3(t)$. Whence by the coroll. to prop. Iv, $G r$ is $=\frac{5}{18} c$ and is the flat temperament of all the $v^{\text {th }}(u)$ and $A s=\frac{3}{18} c$ is the fharp temperament of the refulting viths..

In Tab. 1. column I the afeending numbers $35,36,37,38,8$ ce are affumed for the beats to be made in a given time by the given $v^{\text {th }} c g$ in organs
(i) Prop. xi. coroll. 3 and fchol. s.
(ii) Prop. xin. coroll.
organs of different pitches (x) and from thefe and the given temperament $\frac{5}{18} c_{y}$, the beats of the other $v^{\text {th }} G d ; d a$ in col. 2. 3 of that table are , computed by the method in Prop. xix.

When the $\cdot v^{\text {th }}$ and $\mathrm{VI}^{\text {th }} c g$ and $c a$, have any other temperaments, as $G \rho$ and $A \sigma$, let a and b be the refpective numbers of their beats made in any known timé, and β their common number made in that time when their temperaments were Gr $r=\frac{5}{18} c$ and $A s=\frac{3}{18} c$ as before. Then fuppofing the difference $r_{\rho}=\frac{d}{18} c$, by the fimilar triangles O_{ρ}, Os σ, we have $s \sigma=\frac{3 d}{18} c$. And Fince the numbers of beats made in equal times by a given confonance differently tempered are proportional to its temperaments (y), we have $\beta: a:: G r: G_{\rho}:: 5: 5-d$, whence $d=\frac{5-5 a}{b}$; likewife $\beta: b:: A s: A \sigma:: 3: 3+3 d$, whence again $d=\frac{b-3}{\beta}$. Therefore $5 \beta-5 a=b-\beta$ and $\beta=a+\frac{b-a}{6}$.

In the method above for finding the proper fet of beats we affumed $a=38$ and in the examiple we fuppofed $b=48$, whence $\beta=38+$ $\frac{48-38}{6}=39 \frac{2}{3}$, the neareft to which in column I tab. I being 40 , gives the proper fet, $40,30 \div, 45$ After
(x) Prop. xi. cor. 2.
(y) Prop. xi. cor. 4. and fichol, Is

After this manner I found the proper fet for making the $\mathrm{v}^{\text {th }}$ and $\mathrm{v}^{\text {th }}, c g, c a$, beat equally quick in our organ at Trinity College, to be $36,27-, 40+$, in a warm feafon, after the pitch of it had been depreffed a tone lower, to the Roman pitch, only by changing the places of the keys. Confequently the proper fet for the former pitch would have been $40,30-, 45-$, becaufe the ratio of 36 to 40 or 9 to Io belongs to the tone nearly. For this reafon in the method above I chofe to begin the experiment with the intermediate fet $38.28+, 42+$, and adapted to it the column of beats of the $\mathrm{VI}^{\text {th }} c a$ in the following manner.

When $a=3^{8}, \beta=3^{8}+\frac{1}{6} \overline{b-3^{8}}$, whence it appears if $b=38$, that $\beta=38$; if b exceeds 38 , that β exceeds 38 by $\frac{1}{6}$ of that excefs; if b be deficient from 38 , that β is deficient from 38 by $\frac{1}{6}$ of the defect. So that the common difference of the values of β or beats of the $v^{\text {th }} c g$ being unity in col. 1. Tab. 1, the common difference of the correfpondent values of b or beats of the $\mathrm{vi}^{\text {th }} c a$ muft be fix, as in the column prefixed to the Table.

If $b=0$, that is, if the $\mathrm{vi}^{\text {th }} c a$ fhould come out perfect, we have $\beta=38-6 \frac{1}{3}=3 \frac{2}{3}$, which in col. I. Tab. I continued downwards would give the pitch and the proper fet for an organ about a tone lower than ours, tha' lower than ordinary;
ordinary; becaufe the ratio of 36 to $3 \mathrm{I} \frac{2}{3}$ or 32 , is 9 to 8 belonging to the tone major. Therefore in the experiment above for finding the proper fet, the vit $c a$ cannot beat flat upon any organ now in ufe: and if its fharp beats come out too flow or too quick, a remedy has been given above in art. 6. The reafon of it is this; if either of the temperaments $G_{\rho}, A \sigma$, of the $\mathrm{v}^{\text {th }}$ and $\mathrm{vi}^{\text {th }}$ be increafed, the other will decreafe, and accordingly the beats of the former confonance will be accelerated while thofe of the latter are retarded. So that when the beats of the $\mathrm{vi}^{\text {th }}$ come out too quick to be eafily counted, they fhew that thofe of the $\mathrm{v}^{\text {th }}$ were too flow at firft and therefore muft be accelerated, or the fame number of them muft be made in a lefs time : and on the contrary, when the beats of the $\mathrm{vi}^{\text {th }}$ come out too flow.

In Tab. 2, where the major mid, in order to leffien the diefis (z), is defigned to beat fharp and as quick as the $v^{\text {th }}$ beats flat, the ratio of the temperaments $G_{\rho}, E \tau$, of the $v^{\text {th }}$ and $I^{1{ }^{d}}$ muft be 5 to $3(a)$, and the temperer $O_{\rho \sigma \tau}$ muft be within the angle $E O G$. Hence $G_{\rho}=\frac{5}{23} c(b)$.
But in Tab. I we had $G r={ }_{18}^{5} c$, and fo the ratio of the beats made in a given time by the correfpondent
(z) Sect. viri. art. 2. note u.
(a) Prop. xi. cor. 3. fchol. I.
(b) Prop. v. cor. caf. 2, where $\frac{t}{t}$ may have any value, becaufe the fecond condicion of the propofition is not here required.
fpondent $v^{\text {ths }}$ in $T a b$. I and 2 , is $G r$ to G_{ρ} or 23 to 18 (c).

In like manner a table of beats for any other fyftem might be computed and fubjoined to Tab I, in which the proper fet may be found as before in the I^{ft} experiment. Another fyftem might be tuned by ifochronous beats of the $111^{\text {d }}$ and $\mathrm{vI}^{\mathrm{th}}$, but it differs fo little from that of equal harmony that the mention of it is fufficient.

Corollary. Hence we have the number of vibrations made in a given time by any given found of a given organ. For the number of complete vibrations made in a given time by the found c is the product of this conftant number $96,7 \frac{2}{3}$ multiplied by the number of beats made in that time by the $\mathrm{v}^{\text {th }} c g$ when it beats equally with the $\mathrm{v}_{1}^{\text {th }} c a$, to be found by the method above deicribed.

Thus if that number of beats be 36 in 15 fe conds, in this time the found c makes $36 \times 96,766$ $S \mathrm{Sc}=3484$ complete vibrations, that is $232 \frac{1}{5}$ vibrations in one fecond ; and therefore the found d, which is almoft a mean tone higher than c, makes 260 fuch vibrations in one fecond, which agrees with the experiment made with the brafs wire in prop. xvili.

For the temperament of the $\mathrm{v}^{\text {th }} \mathrm{cg}$, when it beats flat and equally with the $\mathrm{VI}^{\text {th }} c a$, was found to be $\frac{5}{18} c_{2}=\frac{q}{p} c$ in prop. xi, where in caf. $2, \beta=$
$2 q m N^{2}$
(c) Prop. xi, coroll. 4 .

- $\frac{2 q m N}{101 p+q}$, or $N=\frac{161 p+q}{2 q m} \beta=\frac{16 \times 18+5}{10 \times 3} \beta=$ $? 6,7 \frac{2}{3} \times \beta$, the number of vibrations of the found c.

Scholium 3.

If we could meafure any given part of a fecond of time more readily and exactly by any other means than by the beats themfelves, a fingle fet of beats for a given fyftem, as 38,28 , 4^{2}, \& c would alone be fufficient for tuning any given organ according to the given fyftem.

For, by the method above, having found β the proper number of beats which the $\mathrm{v}^{\text {th }} c g$ ought to make in a given time as 15 feconds, the time t, in which it will make the number 38 in the given fet, is to 5 feconds, as 38 is to β; and that time fo determined is the Proper Time in which all the other numbers of beats in the given fet ought to be made by the other $\mathrm{v}^{\text {ths }}$ in the faid organ. But unlefs that time t, which will generally contain fome fraction of a fecond, could be readily and accurately meafured, this method will with equal expedition be lefs accurate, or with equal accuracy will be lefs expeditious than the former.

For if inftead of the mixt number t we ufe the neareft whole number of feconds for the proper time, the limit of the error will be half a fecond; whereas in ufing the Proper Set for any given time, the error is but half the interval of the fucceffive beats of the $v^{\text {th }} c g$, which is two
or three times fmaller than half a fecond, becaufe the number of its beats in col. r. Tab. I, is always between two and three times greater than I 5 , the number of feconds in which the beats are made. And the larger error cannot eafily be reduced to an equality with the fmaller, unlefs by a fet of beats whofe numbers are between 2 and 3 times larger than thofe in the Tables, which would proportionally increafe the time and trouble of counting them. For inftance, inftead of counting $38,28,42$ beats in 15 feconds, we muft count $96,72,107$, in 38 feconds. Becaufe $15,38,96$ are continual proportionals nearly.
As the known method of tuning an inftrument by the help of a monochord is eafier than any other to lefs skilful ears, and pretty exact too if the apparatus to the monochord be well contrived, it may not be amifs to fhew the manner of dividing it according to any propofed temperament of the fcale.

PROPOSITION XXI.

To find the parts of a given monochord, whofe vibrations fball give all the founds in an octave of any propofed tempered fyfem.

Let the fyitem of equal harmony be propofed, and let the feveral parts of the monochord be meafured from either end of it , and be to the whole,
whole, in the ratios of the feveral numbers in the $3^{\text {d }}$ column of the following table, to 100000 ; I fay the vibrations of the parts fo found, and of the whole, will give all the founds in an octave of the propofed fytem, as denoted in the firft column of the table. Q. E. I.

For in the fcholium to prop. xvir we had $2 \mathrm{~T}=0.09631 .0565^{\circ}$ and $2 \mathrm{~L}=0.06025$. 35832 ; whence we have

$$
\begin{aligned}
\mathrm{T} & =0.04815 .52825 \\
\mathrm{~L} & =0.03012 .67916 \\
\mathrm{~T}-\mathrm{L}=l & =0.01802 .84909 \\
\mathrm{~L}-l=d & =0.01209 .83007
\end{aligned}
$$

From thefe logarithms of the tone, limma major and minor and the diefis, and from the logarithm 4.69897.00043 of the number 50000, the uppermoft in the table, all the logarithms below it will be found by the following additions: where the mufical notes in column I are fuppofed alif to reprefent the logarithms over againt them, till you come down to C , which comes out 5.00000 .00000 and fhews that the

$$
\begin{array}{lc}
c+d=\mathrm{B}^{*}, c+l=c^{b}, & c+\mathrm{L}=\mathrm{B} \\
\mathrm{~B}+l=\mathrm{B}^{b}, & \mathrm{~B}+\mathrm{L}=\mathrm{A}, \\
\mathrm{~A}+\mathrm{T}+\mathrm{T}=\mathrm{A} \\
\mathrm{~A}+l=\mathrm{Ab}, \mathrm{~A}+\mathrm{L}=\mathrm{G}, & \mathrm{~A}+\mathrm{T}=\mathrm{G} \\
\mathrm{G}+l=\mathrm{G}^{b}, \mathrm{G}+\mathrm{L}=\mathrm{F} *, & \mathrm{G}+\mathrm{T}=\mathrm{F} \\
\mathrm{~F}+d=\mathrm{E}^{*}, & \mathrm{~F}+l=\mathrm{F}^{b}, \\
\& \& \mathrm{c}+\mathrm{F}+\mathrm{L}=\mathrm{E}
\end{array}
$$

logarithms of the principal notes B, A, G, F, E, D are right; and thofe of the fecondary notes will be right too, if the operations in the addition be right.

The correfponding numbers in column 3 , which may be found by the tables of logarithms, fhew the required parts of the monochord; as a very little reflection will fatisfy any one that underfands the common properties of logarithms, and attends to the intervals of an octave in Fig. 49 defcribed in Sect. viri, but not divided as there into 50 equal parts, which is only an approximation to the fyftem propofed. Q.E.D.

Scboliunn.

The numbers in the $4^{\text {th }}$ and $5^{\text {th }}$ columns of the table fhew the parts of a monochord, whofe vibrations will give the founds of the oppofite notes in the fyftem of mean tones and that of Mr. Huygens, who has fhewn how to find the laft column of numbers in his Harmonic Cycle. And as all the meafures in the 3 fyftems may be taken and marked upon the founding board of the fame monochord, the different effects of thofe fyftems upon the ear, may be cafily tried and compared together, provided the tone of the monochord be good and the divilions accurate, and the moveable bridge does not ftrain it in one place more than in another.
facing p. 224 .
The divifon of a Monochord.

I	2	3	4	5
	4.69897 .00043	50000	50000	50000
B	4.71106 .83050	51412	51200	51131
c^{b}	4.71699.84952	52119	52245	52278
B	4.72909 .67959	53592	53499	53469
B b	4.74712.52868	55863	55902	55914
*	4.75922 .35875	57441	57243	57179
A	$4 \cdot 77725.20784$	59876	$59 \mathrm{SI}_{14}$	59794
$\mathrm{A}^{\text {b }}$	4.79527 .05693	62412	62500	
G	4.80737 .88700	64 I 77	64000	63942
G	4.82540.73609	66897	66874	66866
G b	4. $84343.5^{8} 518$	69733	69877	69924
F*	4. 85553.41525	71702	71554	715
F	4.87356.26434	74742	74.767	74776
E*	4.88566.09441	76853	76562	
F ${ }^{6}$	4.89159.11343	77910	78125	78196
E	4.90368.94350	80110	80000	
E 6	4.92171.79259	83506	83593	8362 I
D*	4.93381 .62266	85865	85599	85512
D	4.95184 .47175	89504	89443	894.22
D^{b}	$4.96987 .3208_{4}$	93298	93459	93512
C	4.98197.15091	95934	95702	9.5627
C	5.00000.00000	100000	10000	100000
	Syftem of	$\begin{gathered} \text { equal } \\ \text { harmony } \end{gathered}$	$\begin{aligned} & \text { mean } \\ & \text { tones } \end{aligned}$	$\overline{\begin{array}{l} \text { Mr.Huy- } \\ \text { sens. } \end{array}}$

-

S E C TIONX.

Of occafional temperaments ufed in concerts well performed upon perfect infruments.

By a perfect inftrument I mean a voice, violin or violoncello, \&c, with which a good mufician can perfectly exprefs any found which his ear requires.

PROPOSITION XXII.

The feveral Parts of a concert well performed upon perfect inftruments, do not move exactly by the given intervals of any one fyfem whatever, but only pretty nearly, and fo as to make perfect barmony as near as pofible.

For inftance, if the bafe be fuppofed to move by the beft fyftem of perfect intervals (d), the other part or parts cannot conftantly move by it too, without making fome of the concords imperfect by a comma (e), which would grievounly offend the muficians (f). Coniequently if they are pleafed, thofe intervals are occafionally tem-
pered by the upper part or parts, which therefore do not move by the fame intervals which the bare is fuppofed to move by.

Likewife if the bafe be fuppofed to move by the fyttem of mean tones and limmas (g), the other part or parts cannot conftantly do fo too, without making about two thirds of all the concords imperfect by a quarter of a comma (b). But whenever concords are held out by good muficians, they feem to me to be always perfect. And if fo, the upper part or parts cannot move by the fyltem of mean tones, which the bafe is fuppofed to move by. And the argument is the fame if the bafe be fuppofed to move by any other fyytem of tempered intervals: and that it cannot conftantly move by perfect ones, I fhall fhew in the next fcholium.

What has been faid of perfect and imperfect concords, is applicable to difcords too, a good ear being critical in both. Now the reafon why the beft muficians acquire a habie of making perfeet harmony, as near as poffible, is plainly this. When the harmony is made perfect they are pleafed and frisified, though the feveral parts do not move by perfect intervals. For the paffing from one found to the next, whether by a perfect or an imperfect interval, being nearly inftantaneous, cannot much offend the mufician. But the fucceeding confonance is long enough held ont to give him pleafure or pain according as he makes it perfect or imperfect. Q.E.D.

Coroll.
(g) Prop. ir.
(b) Prop. Mri. coroll. 3.

Coroll. i. Cateris paribus the harmony will be the fame whatever be the fyftem which the bafe moves by; but the fum of the occafional temperaments will be the leaft poffible, if it moves by the fyitem of mean tones and limmas (i), and but very little bigger, if it moves by the fale of equal harmony (k).

Coroll. 2. The propofition holds true though one of the inftruments be imperfect, as when the thorough bafe is played upon an organ or harpfichord: becaufe the performers of the upper parts are more attentive to make perfect harmony with the bafe notes, than with the chords to them. Confequently thofe parts do not move by the tempered fyftem of the thorough bafe.

Coroll, 3. Ceteris paribus the fame piece of mufic well performed upon perfect inftruments, is more agreeable than it would be if it were as well performed upon imperfect ones, as an organ, \&c.
For nothing gives greater offence to the hearer, though ignorant of the caufe of it, than thoferapid ratlling beats of high and loud founds, which make imperfect confonances with one another. And yet a few flow beats, like the flow undulations of a clofe thake now and then introduced, are far from being difagreeable.

Coroll. 4. Therefore the harmony of a concert will be fmoother and difincter, and geneP 2
rally
(i) Prop. Hir. coroll. ro.
(k) Schol.to prop. xx. art. 6. in the Appendix. and prop. gis coroll. 4.
rally more pleafing, for taking the chords of the thorough bafe as near as can be to the bafe notes, and no more of them than are neceffiary, and thefe few upon the fofier and fimpler ftops of an organ.

Becaufe the beats will then be fewer, flower and fofter, and fo the voices and other inftruments will appear to greater advantage.

Coroll. 5. It appears alfo from the reafons above, that no voice part ought ever to be played on the organ, unlefs to affift an imperfect finger, and keep him from making worfe concords with the bafe and other parts than the organ it felf does.

Scholium.

Mr. Huygens obferved long ago, that no voice or perfect inftrument can always proceed by perfect intervals, without erring from the pitch at firft affumed (l). But as this would offend the ear of the mufician, he naturally avoids it by his memory of the pitch, and by tempering the
(l) Aio itaque, fir quis canat deiuceps fonos, quos Mufici notant literis $\mathbf{C}, \vec{F}, \mathrm{D}, \mathrm{G}, \mathrm{C}$, per intervaila confona, omnino perfecta, alternis voce afcendens defcendenfque; jam poferiorem hunc fonum C, toto conmate, quod vocant, inferiorem fore C priore, unde cani coepit. Quia nempe ex rationibus intervallorum iftorum perfectis, quar funt 4 ad 3,5 ad 6,4 ad 3,2 ad 3 , componitur ratio róo ad :62, hoc eft 80 ad 81, que eft commatis. Ut proinde, If novies idem cantus repetatur, jam propemodum tono majste, cujus ratio 8 ad 9 , defcendife vocem, tongque excintis oportet. Cigmotheros Lio. s. pag. 7\%.
the intervals of the intermediate founds, fo as to return to it again (m).

This is alfo confirmed by what we are told of a monk (n), who found, by fubtracting all the afcents of the voice in a certain chant from all its defcents, that the latter exceeded the former by two commas: fo that if the afcents and defcents were conftantly made by perfect intervals, and the chant were repeated but four or five times, the final found, which in that chant fhould be the fame as the initial, would fall about a whole tone below it. But finding that the voices in his choir did not vary from the pitch affumed, he concluded that the mufical ratios, whereby he meafured thofe fucceffive afcents and defcents, were erroneous. But if he had known Mr. Huygens's remark, it would have folved his difficulty.

This was not the firft time that the truth of thofe mufical ratios had been called in quettion. For Galileo obferved that the reaion commonly
P_{3} al-
(m) Hoc verò nequaquam patitur aurium fenfus, fed toni ab initio fumpti meminit, eodemque revertitur. Itaque cogimur occulto quodam temperamento uti, intervallaque illa canere imperfecta; ex quo multo minor oritur offenfio. Atque hujufmodi modramine ferè ubique cantus indiget; uti colligendis rationibus, quemadmodum hic fecimsus, facile cognofcitur. ibid.
(n) Methode generale pour fomer les Syfieme temperés de mulique. Mem. de l'Acad. des Scienc. Ann.1707. pag. 262. 8 vo.
alledged for it , appeared to him infufficient (0). At lat indeed he hit upon a couple of experiments which gave him fatisfaction (p), but a fcientific proof was ftill wanting till Dr. Taylor publifned his theory of the vibrating motion of a muffal chord (q), which has fince been cultivated by feveral able mathematicians (r), and being the principal foundation of Harmonics, deferves to be further confidered in the next fection.

SECTION XI.

Of the vibrating motion of a muffal chord.

PROPOSITION XXIII.

When a mufical chord vibrates freely, the force which urges any fmall arch of it towards the center of its curvaiure,
(o) Stetti lungo tempo perpleffo intorno à quefte forme delle confonanze, non mi parendo che la ragione, che communemente fe n'adduce da gli autori, che fin qui hanno feritto dottamente della mufica, fofe concludente à bafranza. Dicono effi \&sc. Diforfe attenenti alla Mecanica, Dialgo I°, towaids the end.
(p) Ibidem.
(q) Methodus incrementorum, prop. 22, 23, and Philor. Tranf. Ne 337 , Iv. or Abrigd. by Jones Vol. 4. p. 391.
(r) Commentarii Acad. Petropol. Tom. in. Comment on the Principia Vol. 2. pag. 347 . Mr. Maclaurin's Fluxions, art. 929.

Prop. XXIII. HARMONICS.

ture, is to the tenfion of the chord in the ultimate ratio of the length of that arch when infuitely diminifbed, to the radius of its curvature.

I fuppofe the chord to be uniform, and very flender, or rather to be a mathematical line, flexible by the leaf force and elatic; and its tenfion or quantity of elaftic force to be meafured by a weight, which if hung to one end of it, would diftend it to the fame length which it has when it vibrates freely by the foice of its elafticity.
Pl.xxi. Fig. 50. Let $A C B$ reprefent fuch a chord fixed at the points A and $B, C D$ any arch of it, $C E$ and $D E$ tangents at C and D; in either of which as $E C$ produced if need be, take $E F$ equal to $E D$, and draw $F G$ perpendicular to $F E$, and $D G$ to $D E$, and joining $D F$ produce $G E$ towards H.

Then imagine the chord to keep its curvature while a force applied at E or H draws the tangents $E C, E D$ and thefe the points of contade C, D, fo as to keep them in aquilitrio. And fince the elaflic forces at C and D are each equal to the force of tenfion, the direction of the third force at E will bifect the angle $C E D$ under the other two directions, and comequently will coincide with the line GEH, agreeably to the confruction of the equal triangles $\triangle D G, F F G$.

Hence the three forces at H, C and D, which would keep the point E at reft, are proportional to the fides $D F, F G, G D$ of the ifofcelar triangle $D F G$, to which their feveral directions $E H$, $E C, E D$ are perpendicular; becaufe that triangle is fimilar to any other, as $E D I$, whofe fides are either parallel to, or in part coincident with thofe directions, and therefore proportional to the forces acting in them, by the known theorem in Mechanics (s).

Now fuppofe $C L$ and $D M$ to be the radii of the curvatures of the chord at the points C, D, and the curve $L M$ to be the locus of all the centers of the curvatures at every point of the arch $C D$. Then conceiving the point D to move up to C, and confequently M and G up to L, the li-, mit of the variable ratio $D F$ to $F G$, of the faid forces, will be that of the evanefcent arch $C D$ to $C L$ the radius of its curvature. And a force conftantly equal and oppofite to the former of the two, is that which urges the vanifhing arch $C D$ in the direction $E G$, which ultimately coincides with $C L$; and the latter was the force of tenfron. Q.E.D.

Coroll. When a mufical chord vibrates freely, the forces which accelerate its fmallef equal arches, are conftantly proportional to their curvatures very nearly, provided the latitude of the vibrations be very fmall in proportion to the length of the chord.
(1) See Theorom 33 of Keill's Phyfics.

For the force of its tenfion being then very nearly invariable, the forces which accelerate its fmalleft equal arches are very nearly in the inverfe ratio of the radii of their curvatures (t), which is the fame as the direct ratio of the curvatures themfelves.

> DEFINITION
of the harmonical curve.
Fig. 5 I . Let C be the common center of any two circles $D F, E G$, and $C D E$, CFG any two femidiameters, and of either of the included arches as DF, let FH be the fine, in which procluced both ways, let the lines HI and HK be feverally equal to the other arch $E G$; then while the Semidiameter CFG moves round the center C and carries with it the line IFHK, parallel to it Self and conftantly equal to twice the $\operatorname{arch} E G$, the extremities I, K will deforibe a curve whofe vertex is D and axis $D C$, and whofe bafe $A C B$ is equal to the Semicircumference of the circle EG.
(t) By the prefent Propofition.
Caroll.

Coroll. i. Pl. xxir. Fig. 52. Drawing F.L perpendicular to the bafe $A C L$, a line $K P$ perpendicular to the curve at K, will be parallel to $E L$.

For drawing $K N$ perpendicular to the bafe, let the radius $C F G$ go forwards a little into the place $C f g$, and carry the line $K H F T$ into the place k blfi, cutting $K N$ in O and $F L$ in r. Then fince $H K=E G$ by the definition, and alfo $b k=E g$, their difference $O k$ is $=G g$. Now by the fimilar triangles $C L F$ and Frf, $C F f$ and $C G g, O K k$ and $N P K$, we have $C L: C F$ $:: F r: F f$, and $C F: C G:: F f: G g$, and $e x$ aquo $C L: C G$ or $C E:$ ($F r: G g:: O K$: Ok::) $N P: N K$. Confequently the right angled Triangles $C L E, N P K$ are equiangular, and the perpendicular $K P M$ is parallel to the line $E L$.

Coroll. 2. At any point K the radius of curvature $K M: L E:=L E$ quad. $: K N \times C E$.

For drawing $f l$ parallel to $F L$; another line $k M$, perpendicular to the curve at k, will be parallel to $E l$, by coroll. I ; confequently if the arch $K k$ be infinitely diminifhed, either of the coinciding perpendiculars $K M, k M$ will be the radius of the curvature at K.

In the line $E l$ take $E s=E L$ and joining $L s$, the triangles $L E s$ and $K M k, C E L$ or $C E l$ and $s L l$, are ultimately equiangular.

Now $K N$ or $F L: L C:: f r: r F$ or $K O$, and $L C: L E:: P N: P K:: K O: K k$, and ex agro, $K N: L E:: f r: K k ;$

But $C E: L E:: s L: L l$ or $f r$, therefore componendo, $K N \times C E: L E$ quad. $::(s L: K k::)$ $L E: K M$.

Coroll. 3. Hence if the ratio of the circles $C E G, C D F$ be vartly great, the curvature at any point K will be extremely frall, and its radius $K M: C E:: C E: K N$ very nearly ; becaufe the lines $L E$ and $C E$ will be very nearly equal.

Coroll. 4. Upon the fame fuppofition, the very fmall curvatures at any points D, K are very nearly in the ratio of their diftances $D C, K N$ from the bafe $A B$.

For when $C E$ and confequently $A B$ is given, the curvature at K, being reciprocally as its radius $K M$, is directly as $K N$ by coroll. 3 .

Coroll. 5. Fig. 53. While the greater circle remains let the leffer be diminifhed, and the curve $A K D B$ will be changed into another $A x \delta B$ of the fame Species, and every ordinate to the common bafe will be diminifhed in the fame ratio, that is, $N K: N x:: C D: C \delta$.

Fig. 52. For while any arch $E G$ equal to $H K$ or $C N$ is given in magnitude, let the other radius $C D$ or $C F$ be diminifhed, and becaufe the triangle CFH retains its fpecies, the line CH or $N K$ is diminifhed in the fame ratio with $C F$ or $C D$.

Coroll. 6. Fig. 53. When the axes $C D, C \delta$ of two curves are very fmall in comparifon to their common bafe $A B$, the curvatures at the tops of any
any two coincident ordinates $N K, N \varkappa$, are in the ratio of the ordinates.

For if $x \mu$ be the radius of curvature at x, by coroll. 3 we have $K M \times K N=C E$ quad. $=$ $x \mu \times x N$; whence $x N: K N:: K A T: x \mu$, that is, as the curvature at x to the curvature at K.

Coroll. 7. Hence, fuppofing the curve $A K D B$ to have the elaficity and tenfion of a mufical chord, it will vibrate to and fro in curves very nearly of the fame fpecies with the given curve $A K D B$, provided none of the vibrations be too large.

For let the firft effort of the tenfion reduce that curve into fome other, as $A x \delta B$, in the firt moment of time ; and fince the ordinates $D C, K N$ are in proportion as the curvatures at D and K by coroll. 4 , and thofe curvatures as the accelerating force at D and $K(u)$, acting in the directions $D C$, $K M$ or $K N$ very nearly, and thefe forces as the velocities generated by them in that time, and the velocities as the nafcent ipaces $D \delta, K x$; alternando, we have $D C: D \delta:: K N: K x$ and dividendo, $D C: \delta C:: K N: \varkappa N$. Confequently by coroll. 5 the curve $A x \delta B$ is very nearly of the fame fpecies with $A K D B$. And in the next moment it will be changed into another of the fame fpecies, and fo on, till every point of the chord be reduced to the bafe $A B$ at the fame inftant. And by the motion here acquired it will be carried towards the oppofite fide of the bafe, till by the oppofition of the temfion, it hall lofe
(u) Coroll prop, xxins
all its motion by the fame degrees, and in the fame curves, by which it was acquired; and thus the chord will continually vibrate in curves of the fame fpecies as the firt, neglecting the fmall difference in the directions $K N, K M$, and the refiftance of the air.

Coroll. 8. The fmall vibrations of a given mufical chord are ifochronous.

For if the chord at the limit of its vibration aflumes the form of the harmonical curve, it will vibrate to and fro in curves of that fpecies by coroll. 7, and its feveral particles, being accelerated by forces conftantly proportional to their diftances from the bafe $A B(x)$, will defcribe thofe unequal diftances in equal times, like a pendulum moving in a cycloid.

If the chord at the limit of its vibration affumes any other form, it will cut an harmonical curve, equal in length to it, in one or more points, as A, K, L, B in Fig. 54; and the intercepted parts of the chord will be more or lefs incurvated towards $A B$ than the correfponding parts of the curve, according as they fall without or within them ; and will accordingly be accelerated by greater or fmaller forces than thofe of the correfponding parts of the curve (y). Therefore, fuppofing the chord and curve to differ in nothing but their curvatures, the difference of the curvatures of the correfponding parts will be continually diminifhed by the difference of
(x) Cor. prop. xxur and cor. 6. Defin, curve,
(y) Cor. prop. xarris.
$23^{8} \quad$ HARMONICS. Sect. XI.
their forces, till the parts coincide either before, or when they arrive at the bafe $A B$. And thus the times of the feveral vibrations of the chord will be the fame as thofe of the curve, and therefore equal to one another.

Coroll. 9. The Figure contained under the harmonical curve and its bafe, is of the fame fpecies as the Figure of Sines.

Fig. 52. For fuppofing the circle $D F 2$ to grow bigger till it becomes equal to $E G R$, the figure $A K D B$ will become a figure of fines. Becaufe any ordinate $K N$ to the abfcifs $A N$ or arch $G R$, being conftantly equal to $F L$, will then be equal to the fine of the arch $G R$; and thus every ordinate as $K N$ is increafed in the given ratio of $C F$ to $C G$, or $C D$ to $C E$. And on the contrary the feveral ordinates in the faid figure of fines diminifhed in that conftant ratio of $C E$ to $C D$, are the ordinates in the figure $A K D B$ of the harmonical curve.

PROPSITION XXIV.

The vibrations of a mufical chord fretch. ed by a weigbi, are ifocbronous to tho fe of a pendulum, whofe length is to the length of the chord, in a compound ratio of the weight of the chord to the waight that fretches it, and of the cluplicate ratio of the diameter of a circle to its circumference.

Fig.

Pl. xxiri. Fig. 54. If P be the weight that fretches the chord $A D B$, and $D C M$ be the radius of its curvature at the vertex D, the force that urges any fmall particle $D d$ towards C is $=$ $\frac{D d}{D M} \times \mathrm{P}$ by prop. xxiri.

And fince $D d$ vibrates like a pendulum (z), if it were fufpended by a ftring $O P=D C$ in a cycloid $Q P R=2 D C$ or $D C F$, and were urged at the higheft points $2, R$ by a force acting downwards like that of gravity, but equal to the faid force $\frac{D d}{D M} \times \mathrm{P}$, which urges $D d$ at the limits D, F of its vibrations; the times of thofe ofcillations and of thefe vibrations would be equal to one another. Becaufe the forces being -allo equal at all other equal diftances of the particle from P and from C, would impel it through equal parts of the equal lines $\mathscr{Q} P, D C$ in equal times.

Again putting p for the weight of the chord $A D B$ or $A C B$, the weight of its particle $D d$ is $=\frac{D d}{A B} \times p$.

Hence if another ftring L be to the ftring $O P$ or $D C$, as this latter weight $\frac{D d}{A B} \times p$ is to the former $\frac{D d}{D M} \times \mathrm{P}$, equivalent to the force at D; and the particle $D d$ be again fufpended by the Atring L in another cycloid of the length 2 L ; fince
(z) Coroll. 8. Def. of the curve.
fince at the higheft points of this cycloid the particle is urged downwards by the whole force $\frac{D d}{A B} \times p$ of its own gravity, its ofcillations will be ifochronous to thofe of the former pendulum (a). Becaufe we took their lengths in the ratio of the forces that act upon them at the highef points of the cycloids, that is, $\mathrm{L}: D C:: p \times D M: \mathrm{P}$ $\times A B$; which two ratios compounded with $D C$ to $A B$, give L: $A B:: p \times D M \times D C$ or $p \times$ $C E q(b): P \times A B q$, which was to be proved. For $C E q$ is to $A B q$ in the duplicate ratio of the diameter to the circumference, by the definition of the curve; and we fhewed above that every particle of the curve vibrates in the fame time with the middlemoft. Q.E.D.

Coroll. I. The time of one femivibration, forwards or backwards, of the chord $A B$ meafured by inches and decimals, is $\frac{113}{355} \sqrt{ } \frac{p}{P} \times \frac{A B}{39 \cdot 126}$ and its reciprocal is the number of fuch vibrations made in one fecond.

For the length of a pendulum that vibrates forwards or backwards in one fecond, is 39.126 inches in the latitude of London, and the diameter is to the circumference of a circle as 113 to 355 very nearly, and the times of the vibrations of pendulums are in the fubduplicate ratio of their lengths. Whence putting t for that of the
(a) Comill. Theor. 4 De Motu Pend. in Mr. Coter's Harmon, Mesfurarum.
(b) Curall. 3. De:hn.

Prop. XXIV. HAR M O NICS. 24 I

the pendulum L , we have $t^{\prime \prime}: 1^{\prime \prime}:: \sqrt{ } \mathrm{L}=$ $\frac{113}{355} \sqrt{p} \times A B: \sqrt{P} \times 3 \cdot 126$, and $t^{\prime \prime}=\frac{113}{355}$ $\sqrt{P} \times \frac{A B}{39 \cdot 126}$, and $\frac{\mathrm{I}}{t}=\frac{355}{113} \sqrt{ } \frac{P}{p} \times \frac{39 \cdot \mathrm{I26}}{A B}$, the number of femivibrations made in one fecond.

Coroll. 2. Suppofing the laft number to be n, we have the logarithm of $n^{2}=\log \cdot \frac{P}{p \times A B}+$ $2,58676.52698$, which gives n very expeditioufly.

For the logarithm of $\left.\frac{\overline{355}}{113}\right|^{2} \times 39.126=$ $2,58676.52698$.

Coroll. 3. If the lengths and tenfions of two chords be equal, the times of their fingle vibrations are in the fubduplicate ratio of their weights, by coroll. I.

Coroll. 4. If their lengths and weights be equal, the times of their fingle vibrations are reciprocally in the fubduplicate ratio of their tenfions, by coroll. i.

Coroll. 5. If their tenfions be in the ratio of their weights, the times of their fingle vibrations are in the fubduplicate ratio of their lengths, by coroll. I.

Coroll. 6. The weights of cylindrical chords are in a compound ratio of their fpeciic gravitics, lengths and fquares of their diamet ers, that is, p is as $s \times A B \times d^{2}$; whence t is as $A B \times d \sqrt{p}$, by coroll. r.

Coroll. 7. Hence, if the tenfions and diameters of homogeneal chords be equal, the times of their fingle vibrations are in the ratio of their lengths.

Coroll. S. If the tenfions and lengths of homogeneal chords be equal, the times of their fingle vibrations are in the ratio of their diameters.

Coroll. 9. If the tenfions of fimilar chords be as their fpecific gravities, the times of their fingle vibrations are in the duplicate ratio of their lengths or of their diameters (c).

Scholium.

I. Hence we may find the number of vibrations made in a given time by any mufical found, by comparing it with the found of a given chord fretched by a given weight.

For example in the experiment abovementioned (d) I found the length of the vibrating chord $A B=35.55$ inches and its weight $p=3 \mathrm{I}$ grains troy: And the found of it, when ftretched by the weight $\mathrm{P}=7$ pounds averdupois $=$ 49000 grains troy, was two octaves below the found of the pipe d there mentioned. Hence by coroll. 2, we have $n=131.04$, the number of femivibrations made in one fecond by the wire $A B$,
(i) See Gailize's experiments on chords. Dialogo $\mathbf{1}^{\circ}$ attenente alla Mecanica, towards the end.
(d) Prop. ximir.

Prop. XXIV. HAR M O N I C S. 243

$A B$, and $4 n=524.16$, the number of femivibrations made by $\frac{1}{4} A B$, by coroll. 7 , or by the pipe d; which is double the number 262 of its whole vibrations.

Before this experiment was made the orifice of the pipe was cut perfectly circular, and then the length of the cylindrical part was exactly 21.6 inches, and its diameter 1.9, which I mention becaufe the experiment, being accurately made, is of ufe upon other occafions.
2. When the thermometer is at Temperate, the latitude of a pulfe of the found of that pipe is to the length of the pipe, almof as $2 \frac{1}{2}$ to I , by prop. L. Lib. if. Princip. Philof.

ADVERTISEMENT.

THOUG H the ibcory of imperfect confonances bas been demongrated pretiy clearly, I think, in the fixth Scetion, yet as I bad confidered fome parts of it in different lights and fearched a little further into fome others for my cron diverfion, I tbought it not amifs to print my papers in the form of the following Alditions; that if the reader flould defire any further information, be may bave recourfe to. then whenever be pleafis.

THE CONTENTS.

A cchoolium to prop. viii.
An illuferation of prop. x, with a fobolium confirming the theory of the beats of imperfect confonarces.
Another demongration of foboliun 5.prop. xi, (concerning the analogy between audible and vifible undulations) and of trop. vii.
Another demongeation of prop. xiii and its third corollary, with on ithylatation of the frot, and a fochclium or tavo conforming the theory of the barmony of imperfiet conforiances, and flewing the abfoutte times chad numbers of their vibrations, front cylces and diflocations of their pulfes, contuinedin the periods batevecre their beats.
Schol. 4 to prop. ant, containing tables and obfervantions on the maribers of beats of the concords in the principal fyems.

APPENDIX.

Schol. 5 to prop. $x x$, flewwing the metbods of altering the pitch of an orgon pipe in order to tunce it.

Scholium to Prop. viiz.

Fig. 63.T J HEN different multiples as $3 A B$ and $2 a b$ of the vibations $A B$, $a b$ of imperfect unifons, are the fingle vibrations $A D$, ac of an imperfect conionance, the multipliers 3 and 2 are in the ratio of the lingle vibrations $3 A B$ and $2 A B$, or $3 a b$ and $2 a b$ of the perfect confonance, and therefore fhould be irreducible to fmaller numbers. The different multiples of the vibrations of imperfect unions are therefore fuppofed in the propofition to be the leaft in the fame ratio.

Pl. xxv. Fig. 63, 64. But if different multiples of the vibrations $A B, a b$, as $6 A B$ and $4 a b$, whofe multipliers 6 and 4 are reducible by a common divior, be the fingle vibations of an imperfect confonance, (as they may by internitting 6 - I pulfes of $A B$ and $4-1$ of $a b$, fo as to leave fingle pulies at firt and between every intermiffion,) the period of the imperfections of this confonance will not be equal to that of the imperfect unifons $A B, a b$, but moltiple of it by 2, the greateft common divio of the multiplicrs 6 and 4.

For thofe multiple vibrations $6 \Omega B$ and $4 a b$ are the fame as $3 \times 2 A B$ and $2 * 2 c b$, or $3 A C$ and $2 a C$, in which the equimulaples $2 A B$ and $2 a b$, or $A C$ and $a c$ in fig. 64 , are the fingle vibrations of other inperfect unifons, refuling

from an intermiffion of every fecond pulfe of $A B$ and $a b$ in fig. 63 ; and the period of their imperfections is equal to that of $3 A C$ and $2 a c$, or $A \mathrm{G}$ and $a e$ by this vin ${ }^{\text {th }}$ propolition, and is the fame multiple of the period of $A B$ and $a b$, as $A C$ is of $A B$, or $a c$ of $a b$ by the coroll. 4 to this propofition, that is by 2 , the greateft common divifior of the multipliers 6 and 4 .

An illufration of Prop. x.

THUS in Fig. 23, Pl. xi, after taking away 9 fhort cycles from each end of the cycle $A U$ of imperfect unifons, there remains $k K L m$, part of two more; and in Fig. 25, after taking away 3 hort cycles from each end of the period $A X Y$, there remains $d D e$, part of another; and in Fig. 27, after taking away 4 hort cycles of imperfect octaves from each end of the period $A W$, there remains $i I L m$, part of 2 more; and laftly in Fig. 34, Pl. xir, after taking away 2 fhort cycles of imperfect $v^{\text {ths }}$ from each end of the cycle $A Z$ of the imperfect unifons, there remains $n N Q r$, part of another: which though not fituated exactly in the middle of $A Z$, by reafon of the part $\Delta \varepsilon Z$ of another thort cycle, containing equimultiples of $A B$ and $a b$, is comparatively very near it when the number of Chort cycles in the period is very large as ufual; in which care the beats will be made very nearly in the middle of every period.

Scholium.

It is very unreafonable to fuppofe with Mr. Souveur that the beats are made by the united force of the coincident pulfes of imperfect unifons (e).

For while the imperfect unifons are made to approach gradually to perfection, experience fhews that they always beat flower and flower (f) and by theory (g) the periods of their pulies grow longer and longer. Thercfore in confequence of that gentleman's hypothefis, the unifons fhould alfo beat at the ends of the periods where the pulfes do not coincide: Becaufe it is very improbable that the cycle of unifons, fuppofing it fimple at firft, while it lengthens gradually, will not fometimes be changed into periods as well as into other fimple cycles.

Nor can it be allowed that the unifons will beat only at the ends of their complex cycles. For according as the numeral terms expreffing the ratios of the fingle vibrations of the feveral fucceffive unifons, happen to be reducible or not reducible or to be irrational, the cycles of the pulfes will fometimes be fhortened, fometimes lengthened again, fometimes invariable and fometimes impofible, as fhall be explained by and by ; which accidents difagree with the confant gradual retardation of the beats in the prefent cafe.

Q4
 If

(e) Prop Pri. fchol. 3.
(f) See Phanomena of beats placed before prop. x.
(g) Cor. 5. lemma to prop. Ix.

$249 \quad$ A P P E N D I X.

If it be faid that the pulfes next to the periodical points fall fo clofe to one another, as to affect the ear in the fame manner as if they were quite coincident; it may be fo, and moft probably is fo. And then it will follow that the harmony of the fhort cycles terminated by fuch clofe pulfes, will there be much the fame as that of perfect unifons; at leaft it will certainly be better about the periodical points and coincident pulfes than any where elfe in the periods. But the found of a beat has no harmony in it; on the contrary it rather refembles the common found of a beat or ftroke upon any grofs, irregular body: And this found refults from pulfes of air which rebounding from different parts of the body, difpofed to vibrate in different times, will frike the ear one after another at irregular intervals, like the pulfes in the middle between the periodical points of imperfect unifons. Therefore thefe are the only pulfes in each period, which can excite the fentation of the beats of imperfect unifons. And the like argument is applicable to any other imperfect confonance by prop. viri.

Pl.xxiv. Fig. 55. As to thofe uncertain lengths abovementioned of the fimple and complex cycles of the pulfes of imperfect unifons, while their interval is continually diminifhed or increafed; let one of the founds be fixt and the time of its ingle vibration be reprefented by any given line V and thofe of the variable found by the fucceffive lines $A, B, C, \& x c$, all which lines may confitute any increafing or decreafing progrefion; and
and fuppofing n to reprefent any large given number, let $A: V:: n: a, B: \bar{V}:: n: b, C: V::$ $n: c$, \&c.

Then will the cycles of the pulfes of V and A, V and B, V and $C, \& \varepsilon$, be $n V=a A, n V=b B$, $n V=c C, \& c$, provided every one of the numbers $a, b, c, \& c$, be integers and primes with refpect to the affumed number n. In which cafe the feveral cycles are equal to one another and to $n V$.

But if the terms of all or any of thofe ratios have a common divifor, the correfponding cycles will be fhortened in proportion as the greateft common divifors are larger; and therefore their lengths cannot increafe or decreafe fucceffively in regular order while the fucceffive intervals of the unifons continually decreafe or increafe, unlefs the greateft common divifors decreafe or increafe in regular order too; which can happen but very rarely.

And when the terms of the ratios of any of the vibrations happen to be incommenfurable, a fecond coincidence of their pulfes will be impoff1ble: becaufe no multiple of one vibration can be equal to any multipie of the other.

But in all cafes whatever, the periods of the pulfes of V and A, V and B, V and $C, \& c$, which are $\frac{n V}{n-a}, \frac{n V}{n-b}, \frac{n V}{n-c}, 8<c(b)$, will decreafe continually in the fame propertions with the fractions
(b) Def. nil. fect. vi.

A P P E N D I K.

tions $\frac{n}{n-a}, \frac{n}{n-b}, \frac{n}{n-c}$, whofe magnitudes can never be altered by any common divifors of their terms, whether integers fractions or furds.

Anoiber demonforation of \int cholium 5. Prop. xi, and of Prop. vii.

TH E breadth of the apparent Undulations of the lights and fhades feen at a diftance upon two rows of parallel objects, may be alfo found by the following conftruction.

Pl. xxiv. Fig. 56. Let a plane paffing through a diftant eye at \approx, cut the axes of the parallel objects at right angles in the points $a, b, c, \& c, \alpha$, $\beta, \gamma, \& c$, which are fuppofed equidiftant in both the parallel lines $a b c, \alpha \beta_{\gamma}$. From any object in one of thefe lines to any fucceffive objects in the other, draw the lines $\alpha a, \alpha b, \alpha c, \& c$, and the lines $z v V, z x X, z y Y, \& c$, drawn parallel to them, will intercept the equal breadths of the apparent undulations.

Becaufe while the eye is gradually directed from the middle of any of the breadths $V X, X X$, $\& \in c$, towards either of its extremities, the objects will appear clofer together in couples, in proportion to their fmaller diftances from the next extremity, which was fhewn in this fcholium to be the caufe of the undulations.

For the lines $d \delta, e \varepsilon, f \zeta, g_{n}, \delta c c$, being parallel to $a x$, are parallel to $V v$ by conftuction; and the hires $i t, k_{t}, l_{x}, m \lambda, \& \in c$, being parallel to $b \alpha$,
$b a$, are parallel to $X x$; and fo on. Let lines drawn from z through the objects $\delta, \varepsilon, \zeta, \& x$, of one row, cut the line of the other in D, E, $F, \& c$. Then becaufe the rows are parallel, the ratio of $D \delta$ to $\delta z, E_{\varepsilon}$ to $\varepsilon z, F \zeta$ to $\zeta z, \& c$, is the fame as $V v$ to $v z$, or $X x$ to $x z, \& c(i)$. Whence alfo, becaufe of the parallels between the rows, we have

That is, all thofe ratios are equal, and, alternately, the leffer apparent intervals $D d, E e, F f$, $G g$, are proportional to their diftance $d V, \mathrm{eV}$, $f V, g V$, from the next extremity V of the breadth $V X$; and alfo $H i, I k, K l, L m$, proportional to $i X, k X, l X, m X$, their ciiftances from the next extremity X of the fame breadth $V X$. And the breadths $V X, X \Upsilon, \& c$, are equal, becaufe $a b$, $b c, \& c$ are fo, and the triangles $V z X$ and $a a b$, $X z Y$ and $b \alpha c, \& c$, are fimilar by conftruction. Q.E.D.

Coroll. i. The projections $D E, E F, \& \mathrm{c}$, of the equal intervals $\delta \varepsilon, \varepsilon \zeta, \& c$, are to thefe intervals
(i) 2 vi. Euclid.
in the conftant ratio of $D z$ to δz, or $E z$ to εz, or $V z$ to $v z$, and confequently are equal to one another. Therefore fuppofing the lines $D E$ and $\delta \varepsilon$ or $d e$ to reprefent the times of the fingle vibrations of imperfect unifons, the periods of the neareft approaches of their pulfes $D, E, \delta<c . d, e$, $\& c$, are $V X, X Y, \& c$; And in going from their extremities V, X to the middle, the alternate leffer intervals between the fucceffive pulfes, are proportional to their diftances from the next extremity, as we fhewed juft now: which is another proof of prop. vir.

Coroll. 2. If the eye be moved in a line parallel to the rows, the breadths of the apparent undulations will be conftantly the fame, and if it be moved uniformly in any other right line, their breadths will vary uniformly, and be conftantly proportional to the diftance of the eye from the rows. Becaufe the triangles $V z X, V z Y, \& \in c$, are conftantly fimilar to $a \alpha b, a \alpha c$, \&cc. And this conclufion feems to agree with what I have tranfiently obferved of thefe undulations.

But it is eafy to collect from the conftruction of the figure, and the different ratios of $z V$ to $z v$ expreffed by numbers, that the intervals between the apparent conjunctions of the objects will increafe and decreafe very irregularly; and that no conjunctions can happen except when the eye arrives at certain points of its courfe, and none at all, mathematically fpealking, when its diftances from the two rows, meafured upon any right line, happen to be incommenfurable.

Which

Which conclufions being contrary to the continual appearance of the undulations to the eye in all places, and to the regular increafe or decreafe of their breadth, fhew, that their breadth is not equal to the interval between the apparent conjunctions, no more than the interval between the beats of imperfect unifons is equal to the interval between their coincident pulfes.

L E M M A.

In any period between the fuccefive beats of an imperfect confonance, any given number of Jhort cycles next to one fide of the leaft diflocation of the pulfes, is more barmonious, and the fame number of them next to the other fide is lefs barmonious than the fame number of them next to either fide of the coincident pulfes: and thefe degrees of barmony differ more in thofe periods where the two leaft diflocations differ lefs, and moft of all in the periods where thefe dillocations are equal roben pofible.

Pl. xxv. Fig. 59. Let $A B$ and $a b$ reprefent the times of the fingle vibrations of imperfect unifons, A and a their coincident pulfes, B, C, $D, \& \mathrm{c}, b, c, d, \& \mathrm{c}$, their fucceffive pulfes on each fide of $A, a ; \operatorname{Rr}$ their leaft diflocation in any given period, and confequently the neareft to the periodical point z, which is here placed under Λ, for the convenience of feeing at one view,
view, the fhort cycles next to both fides of Rr and $A a$.

Firft I fay, the fhort cycles $R S, S T, \& c$, which include z, are more harmonious, and $R 2,2 P, \& \mathrm{c}$, lefs harmonious than $A B, B C$, $\& c$, the numbers of them being the fame: and that the degrees of their harmony differ more in the periods where the two leaft diflocations $R r$, $s S$ differ lefs, and moft of all where $R r=s S$, when poflible (k).

$$
\begin{aligned}
& \text { For } b B=\left(A B-A b=R S-r s \text { 三) } \begin{array}{l}
R r+s S \\
\text { And } c C \text { 三 } \\
\text { \& } A C .
\end{array}(A C-A c=R T-r t=) R r+t T .\right. \\
& \& \mathrm{cc} .
\end{aligned}
$$

Hence the fucceffive diflocations $s S, t \mathcal{T}, \& c$, are refpectively fmaller than $b B_{2} c C, \& c$, by $R r$, as appears alfo by their fmaller diftances from $\approx(m)$. But on the other fide of $R r$, the diflocations $2 q, P_{p}, \& c$, are refpectively greater than $b B, c C, \&<c$, by the fame $R r$, for the like reafons.

Now the fhort cycle $R S$ which includes z, is more harmonious than $A B$ next to A. For though the diflocations $R r+s S$ are $=b B$, yet thofe parts of $b B$, as being fimaller than $b B$, will give lefs offence to the ear than the whole: the whole may be perceived and give fome offence even when one or both its parts are imperceptible. And for the fame reafons the fhort cycle $R S$ will be ftill more harmonious than $A B$ in other periods

[^18]
A P P E N DIX.

periods where $R r, s S$ are lefs unequal, and the mof harmonious where they are equal when poffible (n) : their fum being every where the fame.

The next fhort cycle $S \mathcal{T}$ is alfo more harmonious than $B C$; the diflocations $s S, t \mathcal{T}$ being refpectively fmaller than $b B, c C$. Therefore the fhort cycles $R S, S \mathcal{T}$, taken together, are more harmonious than $A B, B C$ taken together; and ftill more harmonious in other periods where $s S$, $t T$ are fmaller, till $s S$ be equal to $R r$.

But on the other fide of $R r$ and $A a$, the fhort cycle $R 2$ is lefs harmonious than $A B$, the diflocations $2 q, R r$ being larger than $B b$ and o. The next fhort cycle $2 P$ is alfo lefs harmonious than $B C$; the diflocations $P p, 2 q$ being refpectively larger than $C c, B b$. Therefore $R Q, Q P$ together are lefs harmonious than $A B, B C$ together; and ftill lefs harmonious in other periods where $R r, 2 q, P p$ are larger, till $R r$ be equal to $s S$. And the fame is evident in any larger equal numbers of fhort cycles throughout the period between the fucceffive beats.

Secondly, any imperfect unifons will be changed into imperfect octaves whofe fingle vibrations are $A C$ and $A b$, or $A c$ and $A B$, by conceiving every fecond pulfe of the feries $A, B, C, \& \varepsilon c$, or $a, b, c, \& c$, to be intermitted, which would deprefs one of the unifons an octave lower.

Now if that intermiffion fhould take away the alternate pulies $S, U, \& c c$, or $s, u, \& c$, the fhort cycles
(n) Prop. Vir. coroll. 2.

256 A P P E N D I X.

cycles of the octaves, next to one fide of $R r$, will be $R \mathcal{T}, \mathcal{T} W, \& c$, and on the other, $R P$, $P N, \& \in$: I fay the former as including z are more, and the latter lefs harmonious than $A C$, $C E, \& c$, the numbers of them being equal.

For we had $R r+t \mathcal{T}=c C$, confequently the flort cycle $R T$ is more harmonious than $A C$, for the fame reafon as in unifons, and becaufe the intermediate diflocations $s S, b B$ are vanifhed, one of their conftituent pulfes in each being taken away. And $R \mathcal{T}$ is fill more harmonious than $A C$ in other periods where $R r$ and $t \mathcal{T}$ are lefs unequal.

The next hort cycle $T W$ is alfo more harmonious than $C E$, the diflocations $t \mathcal{T}, w W$ being refpectively fmaller than $c C, e E$, as in unifons; and is fill more harmonious in other periods where $t \widetilde{T}, \tau w$ are fmaller, that is where $t \mathcal{T}$ and $R r$ are lefs unequal.

But on the other fide of $R r$ and $A a$, the fhort cycle $R P$ is lefs harmonious than $A C$, and $P N$ than $C E$, the diflocations $R r, P p$ being refpectively bigger than o and $C c$; and $P p, N n$ bigger than $C c, E \in$, refpecively : and is ftill lefs harmonious in other periods where $R r, P p, N n$ are larger, that is where $R r, t T$ are lefs unequal.

Therefore the fhort cycles $R T, T W$, \&c are more, and $R P, P N$, \&c are lef's harmonious than $A C, C E, \& c$.

Likewife if that alternate intermiffion hould take away the pulfes $R, \mathcal{T}, W, \& \in$, or $r, t, v, \mathcal{\& c c}$, then the leaft diflocation is $s S$, and the chort cycles
cycles $S 2,20, \& c$, as including z, will be more, and $S U, U X, \& c$ lefs harmonious than $A C, C E, \& \mathrm{c}$, for the very fame reafons as before.

Thirdly, any imperfect unifons will be changed into imperfect $\mathrm{v}^{\text {ths }}$, whofe vibrations are $A c$ and $A D$, (or $A C$ and $A d$) that is $2 a b$ and $3 A B$, by intermitting 2-I pulfes of the feries a, b, $c, d, \delta x c$, which deprefles the acuter unifon an vint ${ }^{\text {th }}$ lower, and 3 -I pulfes of the feries A, B, $C, D, \& c$ leaving fingle ones between, which deprefles the graver unifon a $\mathrm{xir}^{\text {th }}$ or viir $+\mathrm{v}^{\text {th }}$ lower; and thus the interval of the new founds is an imperfect $\mathrm{v}^{\text {th }}$, as reprefented in the uppermoft parallel in the figure.

Now in the period where thofe intermiffions leave the pulfes $r, t, w, y, \& c, R, U, \Upsilon, \& c$, (as in the $4^{\text {th }}$ parallel) the irftermediate ones will be taken away, and then $R r$ being the leffer of the two dillocations in the fhort cycle $R r$ which includes z, is the leaft of all in this period. And the fhort cycles $R \Upsilon, \& c$, on this fide of $R r$, will be more harmonious than $A G, \& \mathrm{c}$ (in the firft parallel) ; and on the other fide, the fhort cycles $R L$, \&c, will be lefs harmonious than $A G, \& c \mathrm{c}$: For the fame reafons as above.

Likewife in the period where the pulfes q, s, $u, x, \& c c, 2, T, X, \& c$ are left (in the $5^{\text {th }}$ parallel), the intermediate ones will be abfent, and then $2 q$ is the leaft dillocation in this period, and a greater difference than before will be found in the harmony of the fhort cycles on each fide of R
$2 q$ and $A a$; the difference $X x-2 a$ being lefs than $r y-R r$ in the former cafe.

Laftly in the period where $p, r, t, \tau, \& c$, $P, S, W, \& c$, are left (in the loweft parallel), the intermediate ones are intermitted, and then P_{p} is the leaft dillocation in this period, and a difference ftill greater will be found in the harmony of the fhort cycles on each fide of $P p$ and $A c$, for the like reafon. And the greateft difference will be found where thefe dillocations are equal when polfible; that is, when a periodical point \approx bifects a fhort cycle of any confonance, which confifts of any odd number of thofe of the unifons; and alfo when either of the coincident pulfes at the ends of the complex or fimple cycles of the unifons, bifects a fhort cycle of any confonance confifting of any even number of thofe of the unifons as in Fig. 35 Plate xir. The like proof is plainly applicable to the vibrations $A C, A d$, or to thofe of any other confonance. Q. E. D.

Coroll. Hence any two imperfect confonances will be as equally harmonious as they poffibly can be, when the periods (between their fucceffive beats) which are bifected by their coincident pulfes, are made equally harmonious; thefe periods having a mean degree of harmony. among thofe of all the other periods in each confonance.

All thofe degress of harmony occur in practical mufic, and whether femibly diferent or
not (o), muft be ufed as if they were equal, and in theory we muft take the medium among them.

As the proof of this conclufion has been pretty long, I avoided it in the Book by a paragraph in the demonftration of prop. xiri, which may now be proved fomewhat differently.

> Another demonftration of Prop. xiii. and its third corollary.

Pl. xxv. Fig. 6o, 61. Let op and $O P$ reprefent the times of the fingle vibrations of imperfect unifons; $a b$ and $A B$ thofe of other imperfect unifons; o and O, a and A their coincident pulfes; and if $a b=o p$, the period of the pulfes of the former unifons, will be to that of the 1atter, ultimately as $b B$ to $p P(p)$.
I. Taking $b B$ to $p P$ as 1 to 2 , this is now the ratio of the lengths of the periods of the unifons $O p$ and $O P, a b$ and $A B$; and the latter is of the fame length as the period of the leaft imperfections of octaves, whofe fingle vibrations are $a b$ and $A C$ or $2 A B$, by intermitting 2 -I pulfes of the feries $A, B, C, D, \& c$, by prop. vili.

Now the fhorter length of the fhort cycles of the unifons $o p, O P$, is $o p=a b$, and that of the thort cycles of the imperfect octaves is $a c$ or $2 a b$, R_{2} and
(c) Prop. xr. fchol. 4. art. 5. lait paragr.
(p) Cor. 8. lem. to prop. dx, and prop. xi. fchol. I,
and the ratio of their lengths is I to 2 , which being the fame as that of the periods of the unifons and octaves, hews that their fhort cycles are equally numerous in them.

The longer length of the fhort cycle of the octaves is $A C$ or $2 A B$, and the difference of the lengths is $2 A B-2 a b=2 b B=c C$ the diflocation of the pulfes at the end of the firft fhort cycle, and is equal to $p P$, becaufe we took $b B$ $: p P:: 1: 2$; therefore the feveral diflocations $e E, \& c, q 2, \& c$, at the ends of the fubfequent fhort cycles of the octaves and unifons, are equal refpectively throughout their half periods, which are therefore equally harmonious:

Becaufe thofe diflocations are the caufes that fpoil the harmony, more or lefs according as they are greater or fmaller; and caufes conftantly equal muft have equal effects: And becaufe the harmony of thefe half periods is the medium among the degrees of harmony of all the reft, by the coroll. to the lemma.
2. Fig. 60, 62. Again, taking $b B$ to $p P$ as I to 3 , this is now the ratio of the periods of the imperfect unifons op and $O P, a b$ and $A B$; and the latter period is equal to that of imperfect $\mathrm{x}_{1}{ }^{\text {th }}$, whofe vibrations will be $a b$ and $A D$ or $3 A B$ by intermitting 3-I pulfes of the feries $A, B, C, D, \& c$, fo as to leave fingle pulfes between every intermiffion (q). And fince $P p=$ $(3 b B=) d D$, it appears that the feveral fubfequent diflocations $q \mathcal{Q}, \& x c, g G, \& x$, of the unifons
(q) Prop. virr.

A P P E N D I X.

fons and xir $^{\text {ths }}$ are equally numerous and equal refpectively throughout the half periods on each fide of $o O$ and $a A$; which render the confonances as equally harmonious as they pofibly can be, for the reafons above mentioned.
3. Fig. 60, 63. Laftly, taking $b B$ to $p P$ as I to 2×3, this is now the ratio of the lengths of the periods of the diflocations of the imperfect unifons $o p$ and $O P, a b$ and $A B$, for the reafon above. And the latter period is of the fame length as that of imperfect $\mathrm{v}^{\text {ths }}$, whofe fingle vibrations $2 a b$ and $3 A B$ refult from intermitting 2-1 pulfes of the feries a, b, c, d, e, $f, g, \& \mathrm{c}$, and $3-\mathrm{I}$ pulfes of the feries A, B, C, $D, E, F, G, \& c$, fo as to leave fingle pulfes at the beginning, and between every intermiffion, by prop. viII.

Now the fhorter length of the fhort cycle of the unifons $o p, O P$ is $o p=a b$, and that of the fhort cycle of the imperfect $v^{\text {ths }}$ is $2 \times 3 a b$ (be-caufe $2 a b: 3 a b:: 2: 3$) and the ratio of there lengths is I to 2×3, the fame as that of the periods of the imperfect unifons $O P, O P$ and the $v^{\text {ths }}$, whofe fhort cycles $o p$ and $a g$ are therefore equally numerous in them.

The longer length of the imperfect fhort cycle of the $\mathrm{v}^{\text {ths }}$ is $2 \times 3 A B$ (becaufe $2 A B: 3 A B:$: $2: 3$) and the difference of the longer and fhorter lengths is $2 \times 3 A B-2 \times 3 a b=2 \times 3 \times \overline{A B-A b}$ $=2 \times 3 b B=g G$, the diflocation of the pulfes at the end of that hort cycle, and is equal to $p P$,
R_{3} becaufe

262 A P P E N D I X.
becaufe we took $b B: p P:: 1: 2 \times 3$. Therefore the feveral diflocations $n N, \& c, q 2, \&<\mathrm{c}$ at the ends of all the fubfequent fhort cycles of the $v^{\text {tha }}$ and unifons, are refpectively equal in magnitude and number too, throughout the half periods on each fide of the coincident pulfes $a A, O O$; which equalities make thefe confonances as equally harmonious as they poffibly can be, for the reaions above.
4. Inftead of the terms 2 and 3 of the ratio of the vibrations of perfect $\mathrm{v}^{\text {ths }}$, if we fubflitute thofe of any other perfect confonance, or m and n indeterminately for them, the method of demonftration will be evidently the fame as in the laft example.

Now thofe imperfect confonances of viI ${ }^{\text {ths }}$, xnt ${ }^{\text {ths }}$, $v^{\text {ths }}$, \&cc are not only equally harmonious with the fame imperfect unifons $o p, O P$, but alfo with one another; the diflocations $p P, c C, d D_{1}$ $g G$, at the ends of their firft and fubfequent short cycles, being equal and equally numerous in their periods. And fince any one of them is equally harmonious to another of the fame name at any other pitch, when their fhort cycles are equally numerous in their periods (r), it appears that all forts of imperfect confonances are as equally harmonious as poffible, when their hort cycles are equally numerous in the periods of their imperfections. Q. E. D.

The equal harmony of flat confonances is demontrable in the fame manner.
(r) Prop. Xif.

A P P ENDIX.

Coroll. Hence when imperfect confonances are equally harmonious, their temperaments have very nearly the inverfe ratio of the products of the terms exprefing the ratios of the fingle vibrations of the perfect confonances.

This is the third corollary to prop. xin and may be demonftrated in this other manner.

The interval of the founds of imperfect unifons is the temperament of the interval of any confonance whofe fingle vibrations are different multiples of the vibrations of thofe unifons (s).

Now in all the examples of tempered confonances we made the vibration ab conftant and $A B$ variable. Confequently the feveral intervals of thefe imperfect unifons, or the logarithms of the ratios of $a b$ to $A B$ were very nearly proportional to the differences $b B(t)$, which in the vint ${ }^{\text {ths }}$ and $v^{\text {ths }}$ were made equal to $\frac{1}{1 \times 2} p P$ and $\frac{1}{2 \times 3} p P$ refpectively. Therefore when thefe confonances are equally harmonious, the ratio of their temperaments is $\frac{1}{1 \times 2}$ to $\frac{1}{2 \times 3}$ very nearly.

And when either of them is equally harmonious to another of the fame name at a different pitch, their temperaments are equal (u), and the terms of the ratio of the vibrations of
(s) Prop. viri. cor. I.
(t) Cor. I. lem. to prop. Ix.
(i) Prop. xir. coroll.

264 A P P E N D I X.

the perfect confonances of that name are the fame.

Confequently the direct ratio of the temperaments and the inverfe ratio of the products of thofe terms, are very nearly the fame in all equally harmonious confonances.

An illuftration of coroll. i. Prop.xiii.

Pl.xxiv. Fig. 57. Let the intervals of the equidiftant points $A, \mathrm{I}, \mathrm{II}, \mathrm{III}, \& \mathrm{c}$ be the longer or the ihorter lengths of the imperfect fhort cycles of any given confonance; whofe half period is $A P$; A and a its coincident pulfes; $a b$ the leffer of the vibrations of the imperfect unifons whofe half period is alfo $A P$. Make the perpendicular $P Q=\frac{1}{2} a b$, and draw $A Q$ cutting the perpendiculars at I, II, III, \&c, in $D, D, D, \& \mathrm{cc}$. Then are thefe perpendiculars equal to the diflocations of the pulfes between the fucceffive fhort cycles of the imperfect confonance, by prop. vir and viII.

Fig. 58. Make the like conftruction denoted by the greek jetters for any other imperfect confonance of the fame or a different name. And if it.be equally harmonious to the former, its half period $\alpha \pi$ will contain the fame number of flort cycles as $A P$ does (x); fuppofe 6 in each. By leffening its temperament, let its half period be lengthened to αp, where erecting the perpendicular

[^19]
A P P E N D I X. 265

dicular $p q=\pi x$ join αq cutting all the intermediate perpendiculars in $e, e, \& \mathrm{c}$. Then the feveral new diflocations ie, $2 e, 3 e, \& \mathrm{c}$ will be fmaller than $I \delta, 2 \delta, 3 \delta \& \mathrm{c}$ refpectively. Therefore the fhort cycles $\alpha 6 e$, contained in a part of the new half period αp, are not only more harmonious than the fhort cycles $\alpha 6 \delta$, contained in the old half period $\alpha \pi \kappa$, or than $A V I D$, but thofe in the remaining part $e 678 e$ continue the harmony in the new half period αp, after that of the old half period is quite extinguifhed by the beat at the end of it.

Coroll. Since only the correfponding fhort cycles of imperfect confonances can admit of a juft comparifon, one by one, in the order of their fucceffion, beginning from the coincident pulfes, or from their leaft diflocations next to the periodical points, (as explained in the demonftration of the lemma,) if the periods of two confonances contain unequal numbers of their fhort cycles, the comparifon will be imperfect; which is another argument \dot{a} priori for the truth of the $\mathrm{XiI}^{\text {th }}$ and $\mathrm{XIII}^{\text {th }}$ propolitions.

Scholium I.

In any pure confonance (y) the fhort cycle contains but one vibration of the bafe, as in Fig. 61, 62, and the equal times between the pulfes of the treble are never fubdivided by any pulfes of the bafe, except at the ends of the fhort
(y) Seç. iII. art. 8.
fhort cycles; and here the diflocations $c C, d D$ are confidered and adjufted with the analogous ones in other pure confonances, by the xinit propofition.

But in any other confonance whofe fhort cycle contains feveral vibrations of the bafe, the equal times between the pulfes of the treble are fubdivided by the pulfes of the bafe, not only at the ends of the fhort cycles, but between them, as at $D, K, 8 c$, Fig. 63 ; where the confideration of the inequalities of the intervals $c D$ and $D e, i K$ and $K l, \& c$, feems to have been neglected in the faid propofition, but in reality is implied in it.

Fig. 63. For fuppofing the alternate pulfes $D, K, \& c$ to be intermitted or taken away, thofe $\mathbf{v}^{\text {ths }}$ will be changed into xit $^{\text {ths }}$ an octave lower than the $\mathrm{XII}^{\text {ths }}$ in Fig. 62 ; but will not be equally harmonious with them, as the $v^{\text {th }}$ were fuppofed to be before that intermiffion, till the diflocations, $g G, n N, \& c$, in Fig. 63 be doubled; that the temperaments of both the $\mathrm{xit}^{\text {ths }}$ may be equal and their periods proportional to their vibrations and fhort cycles (z).

While the diflocations $g G, n N, \& z c$, remain doubied, reftore the pulfes $D, K, \& c$, to their places, and now the intermediate inequalities $D C-D e, K i-K l, \& c$ are alfo the doubles of their former magnitudes and the new $\mathrm{v}^{\text {th }}$ are lefs harmonious than the xir ths in Fig. 62, and will not be equally harmonious with them till the diflocation,
(3) Prop, xil, coroll,

A P P E N D I X.

diflocation, $g G, n N, \& c$, and confequently the inequalities $D c-D e, K i-K l$, \&cc be contracted to their former magnitudes.

Therefore thefe interrupted confonances are not confidered as pure ones in the $\mathrm{xi}^{\text {th }}$ and xinth propofitions, but allowance is made on courfe for the effect of the intermediate pulfes of the bafe.

Scholium 2.

Pl. xxv. Fig. 63 . Suppofing the letters d, k to be reftored to the places of the abfent pulfes of the imperfect unifons, that fall next to D and K, I call the lines or times $d D, k K$ the Aberrations of the interior pulfes D, K, from the places d, k which they have in the perfect fhort cycles. Likewife in the upper part of the fame figure, if $A E$ and $a d$ be the fingle vibrations of an imperfect $4^{\text {th }}$, then $E e$ is an aberration of one of the interior pulfes of the bafe in the firt fhort cycle.

Now if the ratio of the times of the fingle vibrations of any perfect confonance be m to n in the leaft integers, and when it is tempered, if $2 D$ be the fum of the exterior diflocations in any given fhort cycle, the aberration or fum of the aberrations of the interior pulfes of the bafe, from the places they have when the conforance is perfect, will be $\overline{n-1} \times D$.

The reafon of the theorem will foon appear by drawing a fhort cycle or two of a $4^{\text {th }}, 111^{\text {d }}$, 8 c,
\&cc, and by obferving, that as n is the number of the vibrations of the bafe contained in any fhort cycle, fo n-I is the number of its pulfes exclufive of the extreams, and that the fum of the exterior diflocations is equal to the fum of any two interior aberrations equidiftant from them, or to double the aberration in the middle; as is plain from the arithmetical progreffion of the alternate leffer intervals of the imperfect unifons, from which the given confonance is derived.

Therefore in two equally harmonious confonances, as the fum of the exterior diflocations in any fhort cycle of the one, is to the fum of them in the correfponding fhort cycle of the other, in a certain conftant ratio (a), fo the interior aberration or the fum of the interior aberrations in the former fhort cycle, is to the fum of them in the latter in another conftant ratio; and componendo, the totals of the exterior diflocations and interior aberrations are alfo in another conftant ratio.

But the temperaments and periods of the two confonances muft be adjufted by the firft given ratio alone, without any regard to the fecond or third.

1. Becaufe the exterior diflocations are of a different kind from the interior aberrations. For as in feeing fo in hearing, it is more difficult for the fenfe to perceive the quantity of a fmall inequality in the larger fucceffive interval of the points
(a) By the foregoing illuftration,
oa pulfes c, D, e, Fig. 63, than to perceive the fame or a different fmall quantity when bounded by two vifible points or audible pulfes g, G. And the difficulty is greater in more complex fhort cycles of imperfect $4^{\text {ths }}, \mathrm{HI}^{\mathrm{ds}}, \mathrm{vi}^{\text {ths }}, \& \mathrm{c}$, where the fucceffive intervals between the points analogus to c, D, e, do not err from the fimpleft ratio of I to I, but from the more complex ones of I to 2 , I to $3,8 \mathrm{c}$; as will eafily appear from the difpofition of the pulfes in fuch cycles in Fig. 5, Plate I. For which reafon the ratio of the fum of the interior aberrations ought not to be compared and compounded with that of the exterior dillocations.
2. Becaufe it appears from the corollary to the foregoing Illuftration, that no other regard can be had to the interior aberrations, than what follows on courfe from the given ratio of the exterior diflocations, determined by the equality of their numbers in the periods of the two confonances, as in prop. xir and xiri.

Scbolium 3.

To give the reader more determinate ideas of the numbers of vibrations, fhort cycles and diflocations contained in the long cycles and periods of imperfect confonances, and of their abfolute duration in practical mufic, I will add a computation of them in a confonance of $\mathrm{y}^{\text {th }}$ tempered
pered by $\frac{1}{4}$ comma, as it ufually is, more or lefs, in organs and harpfichords.

Pl. xiI. Fig. 34. If $A B: a b:: 322: 32$ 1, the interval of the founds of thefe vibrations is $\frac{1}{4}$ comma nearly (b). Whence $32 \mathrm{I} A B,=322 a b$ $=A Z$, is the length of the fimple cycle of the diflocations of the pulfes of the vibrations $A B$, $a b$, or of the period of the imperfections of any confonances whofe vibrations are different muls tiples of $A B$ and $a b(c)$ and whofe temperament is the interval of the founds of $A B$ and $a b(d)$.

Now the vibrations of imperfect $\mathrm{v}^{\text {ths }}$ are $A D$ and $a c$, or $3 A B$ and $2 a b$, and the two conftant lengths of their imperfect fhort cycles are $A G=$ $2 A D=2 \times 3 A B$ and $a g=3 a c=3 \times 2 a b$.

Hence $A Z=321 A B=\frac{321}{3} \times 3 A B=$ $107 A D=\frac{321}{6} \times 6 A B=53 \frac{3}{6} A G$;

Likewife $A Z=322 a b=\frac{322}{2} \times 2 a b=$ ${ }^{161} a c=\frac{322}{6} \times 6 a b=53 \frac{4}{6} a g$.

And after the coincidence of the pulfes, their firf diflocation is $g G=\frac{1}{16 I} A D$; and the limit of the greatef diflocation is $\frac{1}{2} a b=\frac{107}{644} A D$.
(b) Prop. xi. fchol. s. art.6.
(c) Prop. Vir.
(d) Prop. vidi. cor. I.

For $A B: A B-A b$, or $b B:: 322: \mathrm{I}$; whence $B b=\frac{\mathrm{I}}{322} A B$, and $g G=6 b B=\frac{6 A B}{3^{22}}$ $=\frac{3 A B}{16 \mathrm{I}}=\frac{1}{16 \mathrm{I}} A D$, and $\frac{\mathrm{I}}{2} a b=\frac{\mathrm{r}}{2} \times \frac{32 \mathrm{I}}{322} A B=$ $\frac{1}{2} \times \frac{321}{322} \times \frac{1}{3} A D=\frac{107}{644} A D$, and is the limit of the greateft diflocation, or alternate leffer interval of the pulfes of $A B, a b$ in any half period, by prop. vir.

Now by an experiment mentioned in prop. xviri, I found that the particles of air in an organ pipe called d or d-la-fol-re, in the middle of the fcale of the open diapaion, made 262 complete vibrations or returns to the places they went from, and confequently propagated 262 pulfes of air to the ear (e) in one fecond of time ; though the pitch of the organ was above half a tone lower than the prefent pitch at the Opera. And taking that found for the bafe of our $\mathrm{v}^{\text {th }}$, whofe vibration $A D$ reprefents a certain quantity of time, we have $262 A D=1$ fecond and hence the abfolute times $A Z, A G, G g$ and $\frac{1}{2} a b$ are the following fractions of $\mathrm{I}^{\prime \prime}$.

For, $262 A D: A Z$ or $107 A D:: 1^{\prime \prime}: \frac{107}{262} \times 1^{\prime \prime}$.
and $262 A D: A G$ or $2 A D:: 1^{\prime \prime}: \frac{1}{13^{I}} \times I^{\prime \prime}$.
and $262 A D: G g$ or $\frac{1}{16 \mathrm{I}} A D:: \mathrm{I}^{\prime \prime}: \frac{\mathrm{I}}{262 \times 16 \mathrm{I}}$
$\times I^{\prime \prime}=\frac{1}{42182} \times I^{\prime \prime}$.
and
(e) Sect. 1. art. 12,
and $262 A D: \frac{1}{2} a b$ or $\frac{107}{644} A D:: I^{\prime \prime}: \frac{107}{262 \times 644}$ $\times I^{\prime \prime}=\frac{1}{1568} \times I^{\prime \prime}$.
'And the reciprocal of the periodical time $A Z,=$ $\frac{107}{262} \times 1^{\prime \prime}$, is the number of periods and alfo of beats in $\mathrm{I}^{\prime \prime}(f)$ namely $\frac{262}{107}=2.45$ nearly in $\mathrm{r}^{\prime \prime}$, or 245 in $100^{\prime \prime}$ nearly.

And the leaft diflocations in the fhort cycles, as $\Delta_{\varepsilon} \lambda \mathrm{K}$, which include the fucceffive periodical points Z, are $\frac{1}{2}, \frac{1}{3}, \frac{1}{6}$ of the diflocation $G g$ next to the coincident pulfes.

And thefe meafures are to thofe in any other $\mathrm{v}^{\text {ths }}$ in the fcale of that organ, in the given ratio of the times of the fingle vibrations of their bafes. And the like meafures in any other given confonance, whofe temperament is given, may be computed in the like manner, or derived from thefe by the corollaries to prop. ix.

In this example the $\mathrm{v}^{\text {ths }}$ were tempered fharp, and when they are equally tempered flat, by taking $A d$ and $A C$ for the fingle vibrations, the computation and the meafures will be but very little different.

(f) Prop. x .

Scholium 4 to prop. $x x$.

Tables and obfervations on the numbers of beats of the concords in the principal fyyems.

The following table hows the number of beats made in 15 feconds, by the feveral concords to the bafe note D , or D -fol-re, at the Roman Pitch, and likewile the proportions of the beats of the fame concords to any other bafe note; with this defign, that perfons wanting leifure or proper qualifications for examining the principles and conclufions requifite to determine the fyftem of equal harmony, may yet form fome judgment of its advantages and difadvantages, when compared with the fyftem of mean tones and that of Mr. Haygens; upon this allowed principle, that, ceteris paribus, concords to the fame bafe are more or lefs difagreeable in their kind for beating faper or flower reipectively.

To affift the reader's judgment have added the following obfervations refulting from infpec.tion of the firft table.
I. The beats in column I differ lefs from one another than thofe in column 2 and $3 \mathrm{do}_{2}$ agreeably to the Name of the fyhem.
2. The beats of the $v, v+v i n i, v+2 v i n$ in col. I, are a little quicker than thofe in col. 2, in the ratio of 10 to 9 , and quicker than thofe in col. 3, in a ratio fomething greater. But the

274 A P P ENDIX.
beats of the $\mathrm{VI}, \mathrm{VI}+\mathrm{VIII}, \mathrm{VI}+2 \mathrm{VIII}$ in col. I are much flower than thofe in col. 2 and 3 , in the ratio of 2 to 3 and more.
3. Thefe quick beats of the $\mathrm{VI}^{\text {th }}$ in col. 2 and 3 have the difadvantage to be doubled in
every
TAB. I.
The beats in $15^{\prime \prime}$ of all the

$\mathrm{VI}+2 \mathrm{VIII} \cdot \frac{3}{20}$	80	120	$133 \frac{1}{11}$
$\mathrm{V}+2 \mathrm{VIII} \cdot \frac{1}{6}$	40	36	$34 \frac{8}{11}$
III + 2 ViII. $\frac{1}{5}$	I 3	0	$4 \frac{1}{4}$
$\mathrm{VI}+\mathrm{VHI} \cdot \frac{3}{10}$	40	60	$06 \frac{6}{11}$
$V+V I I I \cdot \frac{1}{3}$	20	18	I7 $\frac{4}{11}$
$\underline{\text { III }+ \text { VIII. } \frac{2}{5}}$	I 3	\bigcirc	$4 \frac{1}{4}$
VI. $\frac{3}{5}$	20	30	$33 \frac{3}{11}$
V. $\frac{2}{3}$	20	18	$17 \frac{4}{11}$
(II. $\frac{4}{5}$	13	\bigcirc	$4 \frac{1}{4}$
Syltem of	equal harm.	mean tones	$\overline{\mathrm{M} . H z y}$ gens.
Column	$\underline{1}$	2	3

$$
\text { A P P E N D I X. } 275
$$

every fuperior octave, whereas the quick beats of the $\mathrm{v}^{\text {th }}$ in col. I. remain the fame in the fecond octave and are only double in the third \&c.
4. The beats of the $11 I^{\mathrm{d}}$ and compounds are quicker indeed in col. I than thofe in col. 2 and S 2 3;
TAB. I.
-... concords to the bafe D-fol-re.

$3^{\text {a }}+2 \mathrm{VHII} \cdot \frac{5}{24}$	96	144	160
$4^{\text {th }}+2$ VIII $\cdot \frac{3}{16}$	107	96	93
$6^{\text {th }}+2 \mathrm{VIII} \cdot \frac{5}{32}$	83	\bigcirc	27
$3^{d}+$ Vilf. $\frac{5}{12}$	4^{8}	72	80
$4^{\text {th }}+$ VIII. $\frac{3}{8}$	53	48	46
$6^{\text {th }}+$ Vili. $\frac{5}{16}$	42	\bigcirc	14
$3 \cdot \frac{5}{6}$	24	36	40
$4^{\text {th }} \cdot \frac{3}{4}$	$26 \frac{2}{3}$	24	23
$6^{\text {th }} \cdot \frac{5}{8}$	$20 \frac{4}{5}$	\bigcirc	7
Syitem of	$\begin{aligned} & \overline{\text { equarl }} \\ & \text { harm. } \end{aligned}$	$\begin{aligned} & \overline{\text { mean }} \\ & \text { tones } \end{aligned}$	$\begin{array}{\|l\|} \overline{\mathrm{M} . ~ H t r y-} \\ \text { gens. } \end{array}$
Column	I	2	3

276 A P P E N D I X.
3; but being flower than the beats of the other concords in all the fyftems, they can fcarce be fo offenfive as thefe will be.
5. Likewife the beats of the $6^{\text {th }}$ and compounds in col. I, being flower than thofe of the

T A B. II.
The order of the harmony-

$\mathrm{VI}+2 \mathrm{VIII}$	240	360	$399 \frac{3}{11}$
$v+2 \mathrm{VIII}$	40	36	$34 \frac{8}{11}$
III + 2VIII	I 3	\bigcirc	$4 \frac{1}{4}$
$\mathrm{VI}+\mathrm{VIII}$	120	180	$199 \frac{7}{11}$
$\mathrm{V}+\mathrm{VIII}$	20	18	$17 \frac{4}{11}$
$\mathrm{III}+\mathrm{VIII}$	26	0	$8 \frac{1}{2}$
VI	60	90	$99 \frac{9}{11}$
V	40	3^{5}	$34 \frac{8}{11}$
III	52	0	17
Syftem of	equal harm.	mean tones	$\overline{\text { M. Huiy- }}$ gens.
Column	I	2	3

A P P E N D I X.

$4^{\text {th }}$ and $3^{\text {d }}$ and compounds with the fame number of viri ${ }^{\text {ths }}$ in all the fyftems, can hardly offend the ear fo much as the quicker beats of thefe other concords will.
6. The fums of the beats of all the concords
to
T A B. II.
------- of all the concords.

$3^{\text {d }}+2 \mathrm{VIII}$	480	720	800
$4^{\text {th }}+2 \mathrm{VIII}$	32 I	288	279
$6^{\text {th }}+2 \mathrm{VIII}$	415	\bigcirc	135
$3^{\text {d }}+$ VIII	240	360	400
$4^{\text {th }}+$ VIII	I 59	144	- 38
$6^{\text {th }}+$ VIII	210	\bigcirc	70
$3{ }^{\text {d }}$	120	180	200
$4^{\text {th }}$	80	72	69
$6^{\text {th }}$	104	\bigcirc	35
Syftem of	$\begin{aligned} & \overline{\text { equal }} \\ & \text { harm. } \end{aligned}$	$\substack{\text { mean } \\ \text { tones }}$	$\begin{aligned} & \text { M. Huy- } \\ & \text { gens. } \end{aligned}$
Column		2	3

278 A P P E N D I X.

to the note D-fol-re in both the col. 1, 2, 3, are refpectively $759,702,805$, whofe proportions with refpect to the fame or any other bafe note are $38,35,40$ very nearly. The fmall excefs of the firft fum above the fecond arifes chiefly from the beats of the 11^{d} and $6^{\text {th }}$ with their compounds, which in all probability are inoffenfive, as we faid before.

But a completer rule for comparing the harmony of imperfect concords to a given bafe, appears in the fecond table; That concord to which a finaller number correfponds, being more barmonious, in its kind, than any other to which a larger number correfponds; which affords two or three more obfervations.
7. In col. I and 3, the $11 I^{\text {ds }}$ become more harmonious by the addition of vilit ${ }^{\text {ths }}$.
8. In all the fyftems, the $v+v i r i$ is more harmonious than the v and $\mathrm{v}+2 \mathrm{vin}$.
9. In col. I, the $v^{\text {th }}$ is more harmonious than the III ${ }^{\text {d }}$ and VI ${ }^{\text {th }}$, the $v+$ vini than the III + viif and Vi + viri, and likewife the $4^{\text {th }}$ and compounds than the $6^{\text {th }}$ and $3^{\text {d }}$ and compounds with equal numbers of viriths.
10. It may be objected to the fyftem of equal harmony that the beats of the $v^{\text {ths }}$ are not only a little quicker, but fomething fronger and diEincter than thofe of the other concords; which deferves to be confidered. On the other hand it fhould be confidered too, whether thofe very quick and lefs diftinct beats of the $\mathrm{VI}^{\text {th }}$ and compounds,
pounds, have not a worfe effect in deftroying the clearnefs of their harmony.

Thefe are the principal advantages and difadvantages that occur in comparing thefe fyftems. For as to the falfe concords being fomething worfe in the fyftem of equal harmony than in the other two (g), this is no objection to the fyftem, but only to the application of it to defective inftruments; and I have fhewn above how to fupply their defects, without the leaft inconvenience to the performer (b).

I fhall only obferve, that the firft table was calculated from the temperaments of the fyftems in prop. xvir and fcholium, by the corollaries to prop. xi ; and that the numbers in that table multiplied by the numerators of the known fractions, annexed to the characters of the correfponding concords, produce the correfponding numbers in the fecond table, according to coroll. I2, prop. xiri.

Scholium 5 to prop. xx.
The found of an open metalline pipe will be flattened or hharpened a little by bending a fimall part of the metal at the open end, a little inwards or outwards, refpectively.

The found of a ftopt pipe, made of metal, will be flattened or fharpened a little by bending the ears, at the fides of the mouth, a litle inwards or outwards, refpectively.

The
(g) Sect, vili, art. 2.
(b) Scel. vill, art. IIt .

The found of an open wooden pipe will be flattened or fharpened a little, by depreffing or raifing the leaden plate that hangs over the open end, refpectively.

The found of a fopt wooden pipe will be fiattened or fharpened by drawing the plug outwards or forcing it inwards, refpectively.

The found of a reed-pipe will be flattened or fharpened by caufing the brazen tongue to be lengthened or fhortened, refpectively.

There is fomething curious in the reafons of thefe effects, but as they cannot be well explained in few words, I muft omit them.

ALPHABETICAL INDEX,

reforring firt to the Pages by the common numbers, to the Propofitions by the Roman numbers and to the Notes by the letters in books.

A.

AC UTE and grave founds whence called high and low 2 (b).

B.

Beats of an imperfect confonance
defcribed 78 .
difagreeable and deftructive of harmony So, 227 cor. 3,
how caufed 8 I , lin. 21 ; 248, lin. 10.
a falfe caufe of them by M. Sauveur 94, fchol. 3.
different from the fluttering roughnefs of a perfect confonance 97 art .3 .
refult chiefly from the cornet and fefquialter ftops of an organ 80.
the time between them is equal to a period of the leaft imperfections of the confonance, but not the fame 8i, x.
the number of them made by a given confonance in a given time determined by a theorem 82 XI.
the ultimate ratio of fuch numbers made by different confonances 83,84 .
are of ufe to find the pitch of an organ 195 \& and in tuning an organ to any defired degree of exactnefs 206 , xx and fchoi, and a harplichord too by the help of a machine 210 , art. 6 .

I N D E X.

ratio of their numbers made in a given time by the $\mathrm{v}^{\text {th }}$ and $\mathrm{vi}^{\text {th }}$ to a given bafe 206, cor. 3 , and by every concord in the principal fyftems 273 . their theory agrees with experiments 88 , fchol. 2 .

C.

Chords of a thorough bafe to be taken near the bafe notes 227 , cor. 4 .
Coincidences of the pulfes of tempered confonances not neceffary to good harmony 99, art. 2, 7, 8 .
Colours bear fome analogy to mufical founds 31 (d). Comma what iI, art. 4 .
Concerts performed on perfect inftruments conifidered 225 , feet. x.
Concords
diftinguifhed from difcords 21 , art. 1 I.
divided into three parcels belonging to three temperaments 44 , ichol. and 142 tab. I.
falfe, what and how many in each key 16_{3}, art. 5 , Plate xix.
Confonances perfect
what 11 , art. 5 .
their names and notation 9, Sect. 2.
how reprefented by lines 14 , art. 1 .
the cycles of their pulfes what $\mathbf{1}_{5}$, art. 2 , and in what proportions 22 , art. I2, I3.
the order of their degrees and moles of fimplicity 16 , art. 5,6 .
pure and interrupted what 19 , art. 8 .
diftinguilhed into concords and difcords 2 I, art. II .
Confonances imperfect
what 11 , art. 5.
the periods of their imperfections 64, viII, IX.
are not inharmonious though their vibrations be incommenturable sor, art. 5 .

I N D E X.

are equally harmonious when their fhort cycles are equally numerous in the periods of their imperfections in $\mathrm{O}, \mathrm{XII}, \mathrm{XIII}, 259,265$, cor; and more harmonious when more numernus i16, cor. I, 264, lin. 7 .
the order of their degrees of harmony determined with refpect to their temperaments in 7 , cor. 2, and to their beats 121 , cor. II.
the fimpler can generally bear greater temperaments than the lefs fimple can with equal offence 120 , cor. 8 .
equally tempered are generally more harmonious for being fimpler in 9 , cor. 7 .
fuperfluous and diminifhed what, Sect.viii. art. 8. falfe, what 160 , Def. in.
Curvature, its radius cietermined at any given point of the harmonical curve 234, cor. 2.
Cycles
of the pulfes of perfect confonances compared 22, art. I 2,13 , often called fhort cycles 56 , Def. iv.
of the pulfes of imperfect unifons diftinguifhed into fimple and complex, and the complex into periods 56 . defin. $1,2,3$.

D.

Diefis what 160 , def. 2.
Difcords
diftinguifhed from concords 21 , art. I I.
not regarded in determining the beft tempered fyftem of founds i40. art. I I.
Diflocation of pulfes what 65 , lin. 16 .
E.

Eighth, how to tune it perfect by beats $94, \operatorname{lin} .7$. Elements of intervals what 13 , arc. 8.
a table of them 10, col 5 .

$$
\text { Pr }_{2} \text { Flut }
$$

I N DEX.

F.

Flutterings of a perfect confonance are different from the beats of the imperfect one 97 , art. 3 .

G.

Grave and acute founds whence called low and high 2 (b).
Galileo firt explained the fympathy of vibrating chords I, and queftioned the truth of the mufical ratios 229 , lin. 19 .

H.

Harmonics,
its principles Sect. I. how defined by Ptolemy 3 (d).
Harmony of imperfect confonances
is better in the fame order as their fhort cycles are more numerous in the periods of their imperfections in 6 , cor. i, or as their temperaments multiplied by both the terms of the perfect ratios belonging to the perfect confonances, are fmaller IIf, cor. 2.
is better both as they beat flower and as the cycles of the perfect confonances are florter 121, cor. II.
is better, in confonances of the fame name, when their temperaments are fmaller, and equally good when equal 118 , cor. 4 .
is generally better in thofe that are fimpler, if the temperaments be equal II9, cor. 7 .
Harmony of the tempered concords
not equally good in the fyftem of mean tones 120, cor. 9 .
nor in the fyftem of 31 equal intervals in the octave 121, cor. 10.

I N D E X.

Harmonical curve and its properties 233 , \&rc, its figure is of the fame fpecies as the figure of fines 238 , cor. 9.
Huvgens proves that the voice in finging moves by imperfect intervals 228 , fchol; fays the fyltem of mean tones is the beft $44(n)$; his harmonic cycle refulting from the octave divided into 31 equal intervals 158 , fchol; 161, art. 2; 224 , fchol; 121, cor. 10 .

I.

Interval of two mufical founds
defined 5, art. 9 .
is a meafure of the ratio of the times of the fingle
vibrations of the terminating founds 6, art. 10 . may be meafured by logarithms 7 , art. I i. perfect and imperfect or tempered, what 11 , art. 5.
its temperament what 12 , art. 6 .
Intervals, alternate and leffer, of the pulfes of imperfect unifons increafe and decreafe uniformly by turns 57 , VII.
Incommenfurable vibrations abound in tempered fyftems 97, fchol; difapproved by Dr. Wallis, Mr. Euler and others 100, art. 4. their pulfes have determinate periods but no cycles and yet produce good harmony ror, art. 5 .

K.

Keys, flat and fharp, how many falfe confonances in each in the organ or harpfichord 162 , art. 4, 5; which have both flat and fharp founds and which but one fort 164 , art. 6 .
how to make any of them as harmonious as the beft of all 170 , att. 14 .

T3 limma

I N D E X.

L.

Limma what 24 , art $3 ; 36$, lin. $6 ; 39$ in. Logarithms of fmall given ratios in what proportion 69 , lemma and corollaries.
M.

Machine for tuning inftruments by beats fuggefted 210 , art. 6.
Mean,
arithmetical, fome of its properties 123 , defin. 1 . harmonical, fome of its properties 125 , defin. 2 .
Monochord how divided for tuning inftruments 222, xxi.

Mufical chord, its vibrating motion confidered 230 , Sect. xi. its tennion how meafured 23 I , lin. 5 .
the force that accelerates its motion at any point 230, Xxili. its mall vibrations are ifochronous 237, cor. 8. the time of a fingle vibration determined from the tenfion, weight and length 238 , xxiv. Mufical intervals are meafures of ratios 6, art. 10. N.

Names and Notation of confonances 9 , Sect. 2, and in Tab. Iv, Plate xx.
Neroton's analogy between the breadths of the 7 pimary pritimatic colours and the 7 differences Ot the lengths of 8 mufical chords D, E, F, G, $A, B, C, d, 31$ (d).

$$
\mathrm{O} .
$$

Octaves why kept untempered 140 , art. 12.
Organ,
how to tune it by eftimation and judgment of the ear 189, by a table of beats 206 , xx , by ifochronous beats of different concords, 211 .

I N D E X.

the propereft feafon for tuning the diapafon 209, art 4.
cautions to be obferved in tuning it 209, art. 4, 5 .
its pitch, how to find it 192, xvili; $195 \& \mathrm{c}$, how to raife or deprefs it 208, art. 1 , how much it varies by heat and cold in different feafons 193, fchol, how to know when it varies and returns to the fame again 194, cor.
Organ pipe, how to alter its pitch 279 , fchol.

P.

Parcels of concords
defined 44, and fpecified in Table r, 142.
Parts of a mufical compofition, fhould not lic too far afunder 227 , cor. 4 , performed upon perfect inftruments do not all move by the intervals of any one fyftem $225, \mathrm{xxir}$.
Perfect ratios what io, Table col. I; II, art. 5 ; queftioned by Galileo 229, lin. 19.
Performers on perfect inftruments make occafional temperaments 225 , Sect. x, endeavour to make perfect confonances, and why 226 .
Period
of the pulfes of imperfect unifons what 5^{6}, def. 1, 2, 3 .
of the leaft imperfections of a confonance, compared with thofe of imperfect unifons 6_{4}, vili, IX.

Periodical points of imperfect unifons how fituated 62 , cor. 1 .
Periodical time between the beats of an imperfect confonance is equal to the period of its leaft imperfections $8 \mathbf{x}, x$, and is the fame as that of its greateft imperfections 82, cor.

$$
\mathrm{T}_{4} \quad \text { Pitch }
$$

I N D EX.

Pitch
of a mufical found what 2, art. 2.
of an organ pipe how altered 279 , fchol.
of an organ what and how to find it 192, xvili; 195, 197, how to raife or deprefs it 208, how much it varies by heat and cold in different feafons 193, fchol; how to know when it varies and returns to the fame again 194. cor.
T'rejudices in favour of any fyftem familiar to us, to
be guarded againft 210 , art. 5 .
Principles of harmonics Sect. 1.
Ptolcmie's Genus diatonum ditonicum, et diatonum
intenfum 33, art. II.
Puifes
of air or founds confidered $1 ; 8$, art. 12; 20, art. 9 .
of imperfect unifons have cycles and periods 56 , def. 2,3 , in which the alternate leffer intervals increafe and decreafe uniformly by turns 57 , VII.
their coincidences not neceffary to the good harmony of imperfect confonances IOI, art. 5; 103, art. 7, 8.
the frequency of their coincidences is but an imperfect character of the fimplicity and fmoothnefs of perfect confonances 22 , art. 14 .

Q.

Quality of the pulfes of founds, as to duration, fluength, weaknefs, \&c, need not be confidered in harmonics 20 , art. 9 .

R.

Ratios
perfect what 10, table col. i ; in, art. 5 ; queftioned by Galileo 229, lin. ult.

I N D E X.

the proportion of their logarithms when fimall 69, lemma and cor. $\mathbf{1}, 2$.
Ratio of the times of the fingle vibrations of two founds, whofe interval is any given part or parts of a comma, how expreffed 72 , cor. 4.

S.

Salinas fays the antients ufed imperfect confonances 34 (b), claims the firft explication of a mufical temperament 37 (l).
Sauveur's attempt to explain the reafon of the beats of imperfect confonances 94 , fchol; confuted 96 , art. 2; 247.
Simplicity of confonances, what 15 , art. 4 ; degrees of it reduced into order by a Rule 16 , art. 5, and by a Table 18, and compared with the perceptions of the ear 21 , art. 10.
Scale of mufical founds, defective in organs and harpfichords I_{3}, art. 5, which founds are moft wanted in it 165 , art. 7 , Plate xix, how to fupply them wholly or in part without the incumbrance of more keys 168 , art. II ; 173, art. I8; 177, art. 19.
of fingle founds in the harpfichord preferable to unifons 171, art. 15, \&c, loud enough if well penned and often heard 172 , art. 17 .
Sound,
how caufed 1 , when mufical 2, its gravity and acutenefs 2 , its other qualities not confidered in harmonics 3 , art. $3 ; 20$, art. 9 .
Syftems of the antients 33, art. 11, unfit for mufic in feveral parts 33, art. 12; 24 art. 4 .

I N D E X.

Syltem

of major tones and limmas 23 , art. $1,2,3$, its imperfections difagreeable to the ear 24 . att. 4 .
of tones major and minor and hemitones 25 , I, its leaft imperfections 29 , cor; difagreeable to the ear 32 , art. 9 .
of mean tones 35 , II, how tempered 36 , cor; pronounced to be the beft by Mr. Huygens 44 (n), but is not equally harmonious 12 I , cor. 9 .
of Mr. Huygens, refulting from a fcale of 3 I equal intervals in the octave, how tempered 158 , fchol; not equally harmonious 121 , cor. 10 .
of equal harmony, determined 130, XVI, is the moft harmonious fyftem taking one concord with another 14I, art. 13, its temperament 140, art. 10, how computed by Tables 137 , fchol, how to approximate to it, or any given tempered fyitem by fcales of equal intervals $\$ 58,159$, differs infenfibly from a fyttem refulting from a fcale of 50 equal parts in the octave $I_{5} 6$, xvir.

> T.

Fiaylor the firft that determined \grave{a} priori the time of a fingle vibration of a mufical chord 230 , lin. 3 .
Temperament of a confonance, what 12 , art. 6 .
Temperaments of a fyftem, what and whence occafioned 32, art. 9 ; no footiteps of them among the Grecian writers $34(b)$, the invention of them claimed by Zerlino and Salinas $37(l)$, the proportions of their fynchronous variations 38 , int, are fhewn alfo by a linear conftruction 40, cor. 2.

I N D E X.

Temperaments
of the fyftem of mean tones 36 , cor.
of the fyftem of equal harmony, 140 , art. 10.
of fome of the concords cannot be lefs than a quarter of a comma 4 I , cor. 3 .
what the other temperaments are when that of the $v^{\text {th }}, \mathrm{vi}^{\text {th }}$, or $11^{\text {d }}$ is nothing 41 , cor. 3,4 , 5 , in what cafes that of the $\mathrm{v}^{\mathrm{th}}, \mathrm{vi}^{\text {th }}$, or 111^{d} is equal to the fum of the other two 42 , cor. 6, 7,8 , the fum of them all is lefs when the $111^{\text {d }}$ is flattened than when it is equally fharpened 43 , cor. 10 , when the fum of them all is the leaft poffible 43, cor. 10.
their proportion requifite to make any two given confonances equally harmonious 118 , cor. 3 .
Temperer of a fyftem, the limits of its pofition when the temperament of the $\mathrm{v}^{\text {th }}, \mathrm{Vi}^{\text {th }}$, or $I I_{1}{ }^{\text {d }}$ is equal to the fum of the other two 42 , cor. $6,7,8$, to find its pofition from the given ratio of the temperaments of any two concords indifferent parcels $46 \mathrm{Iv}, 48 \mathrm{v}, 53 \mathrm{vi}$.
Tenfion of a mufical chord how meafured 231. lin. 5 .
Tuning
by eftimation and judgment of the ear 187,189 ,
by a Table of beats 206, $x x$, is extremely accurate 209, art. 4.
by a machine fuggefted 210 , art. 6 .
by ifochronous beats of different concords 21 I. by a monochord 222, xxI.

$$
\mathrm{V} .
$$

Variations of the temperaments of intervals fhewn by a Table 38, III, and by a linear conftruction 40, cor. 2.

Vibration

I N D E X.

Vibration often fignifies the time of it 8 , art. 12 . a complete one, what 8, art. 12 .

Vibrations

how communicated to diftant bodies I. whofe times are incommenfurable have determinate periods but no cycles, and yet afford good harmony 101, art. 5 .
of a mufical chord, wider and narrower, nearly ifochronous 4, art. 4, and alfo of the particles of air at different diftances from the founding body 4 , art. 5 ,
their times determined from the length, weight and tenfion of given chords 238 , xxiv and cor ; cateris paribus are as the lengths of the chords 5, art. 7 ; 142, cor. 7.
Voice,
its motions in finging and talking are different 3 (c).
in finging does not always move by perfect intervals 229 , fchol; but makes occafional temperaments 225 , fect. x , does not move by the given intervals of any one fyltem 225 xxir, but fo as to make perfect harmony with the bafe 226 .
Voice part of an anthem ought not to be played on
the organ 228, cor. 5 .
Undulations, audible and vifible compared 107, fchol; 250, lin. 6 .
Unifons
perfect what 2 , imperfect what 56 , defin. 1 .
the alternate leffer intervals of their pulfes increafe and decreafe uniformly by turns 57 vii .
the periods of their pulfes what 56 , defin. 3, are the fame as thofe of their leaft imperfections

I N D E X.

tions 63 , cor. 5 , their proportions 63 , cor. 4, compared with thofe of imperfect confonances 64 vili, ix.
in the harpfichord worfe than fingle founds 171 , art. 16 .

W.

Wallis difapproves incommenfurable vibrations as impracticable and inharmonious 100, art. 4.

Z.

Zarlino the firft writer upon a mufical temperament 37 (l).

$$
F \quad I \quad N \quad I \quad S .
$$

Corrections.

 ir. lin. 4 , for $c e ́, ~ r . ~ c c^{\prime}$.
51. note, lin. 2, dele the firft minus-
$69,71,73$ in the running titles, for Prop. VIII. r. Lemma.
7I. lin. penult. for $-\frac{q}{p} a$, r. $-\frac{q}{p} d$.
iI 4, II 5 , notes (p) and (q), for cor. 7. r. cor. 8.
168. lin. I. dele 9.
169. lin. 12. for fingle, r. one.
$163,165,167,169,171$, in the running titles, for Prop. XVII. r. Art. 5, 7, 9, I2, I5, refpectively.
227. note (k) for fchol. r. fchol. 4 .

Pl.I.

MI.

Fig. 6.

P1.II.
Fig. 14.

P1.IV.

115. 小•

PLV.

155

Fig. 18.

P1.VIT.
Fig: 19.

P1.VIII.

PI VII.

PIIX.

I' D .

PI.X.
ig. 22.

都

Plate XII.

PL.XV」

11 XIII
-3major Consonances to 24.Keys. Pl.XIX

IV	$5^{\text {th }} \mathrm{V}$	$6^{\text {th }}$. VI	$7^{\text {th }} \mathrm{VII}$	
\%	G*	(4)	(B)	(6)
(B)	C* (${ }^{*}$	(10)	(12)	*
E	F*	G^{*}	(A*)	3
**	(18)	C* ${ }^{\text {c }}$	(1)	O
D*	E E	F* F ${ }^{\text {a }}$	G^{*}	
G**	A A	B (Ba)	C* C	,
C* (*)	D (1*)	E Ex	F* ${ }^{\text {F }}$	\%*
E* F	G G ${ }^{\text {x }}$	A (A*)	B (B)	c^{*}
B (B)	C C*	$\mathrm{D} \because(\mathrm{D} *$	E (E)	f
E (F F*	G G*	A A*)	b
A (A*)	${ }^{3}$	C*	D (D)	e
D (${ }^{\text {a }}$	Eb E	F F*	G G*	a
G G*	(A) A	B, B	*	d
C C*	(12) D	EL E	F F*	g
F*	(G) G	(4)	B ${ }^{\text {b }}$	c
B ${ }^{\text {B }}$	(C)	(11)	Eb E	f
Eb E	(F)	(G)	(4) ${ }^{\text {(1) }}$	b
4b) A	(13) B	(C) C	(1) D	ch
D D	- EL		(G1) G	(4)
(6) G	(A)	(B) B	(c) C	(a)
C	(1)		(F) F	(5)
F	(1)		(13) BL	(c)
	(c)		- Eb	1
Eb	(F)	G)		(60)

$\mu 1.4$

Fig. 54.

I'I. XXIV.

1！！，

Pl.xxvir.

2H.S. foulp.

[^0]: (q) See Art. 12. following.
 (r) Art. 10. Sect. I.

[^1]: (e) Sect. Iv. Art. 4 .

[^2]: (f) Sect. III. and Table of the order of the fimplicity of confonances.

[^3]: (t) Schol. prop. 111.

[^4]: (j) Sect. I. Art. 12.

[^5]: (o) Pro. vir, comoll. 3 .

[^6]: (b) Prop. vir. coroll. 4.
 (i) Sect. r. Art. io.

[^7]: (t) Sect. I. Art. .

[^8]: (g) See Dem. Prop. viri. towards the end "A And " Univerfally, Eic.
 (b) Prop. viif. Cor. I, 2.
 (i) Ibid. Cor. 2.

[^9]: (i) Prop. vili (p) Cor. i. Lemma to Prop. Ix.

[^10]: (q) Cor. 7. Lemma to Prop. ix,

[^11]: (.) Prop. xif. (i) Prop. vir and viri.

[^12]: (k) Defin. I. Coroll I or 2.
 (l) Defin. 1. Coroll. 3.
 (m) Defin. I。

[^13]: (y) Def. 1. coroll. 1. 2. 3. Sect. Vin.
 (~) Prop. xiv.
 (a) Prop. Ix. coroll. A.
 (b) Def. 2. coroll. I. Sect. Vin.

[^14]: (i) Sect. iv. art. 7 .
 (k) Prop. xyit, fchol.
 (i) Prop xitil.

[^15]: (z) As appears by Fig. 40.
 (a) As in Corelli's xith folo and Carbmal's int sic.

[^16]: (g) See thofe numbers in the lower line of Fig. 70.

[^17]: (c) Prop. II^{d}. cor.
 (d) Prop. xviin.

[^18]: (k) See prop. vil. coroll. 2.
 (l) See prop. vir. coroll. I.
 (m) Prop. vis.

[^19]: (x) Prop. xil, xili.

